Search results
Results From The WOW.Com Content Network
To distinguish these two thermal expansion equations of state, the latter one is called pressure-dependent thermal expansion equation of state. To deveop the pressure-dependent thermal expansion equation of state, in an compression process at room temperature from (V 0, T 0, P 0) to (V 1, T 0,P 1), a general form of volume is expressed as
We obtain the distribution of the property i.e. a given two dimensional situation by writing discretized equations of the form of equation (3) at each grid node of the subdivided domain. At the boundaries where the temperature or fluxes are known the discretized equation are modified to incorporate the boundary conditions.
A number of materials contract on heating within certain temperature ranges; this is usually called negative thermal expansion, rather than "thermal contraction".For example, the coefficient of thermal expansion of water drops to zero as it is cooled to 3.983 °C (39.169 °F) and then becomes negative below this temperature; this means that water has a maximum density at this temperature, and ...
where p is the pressure, V is volume, n is the polytropic index, and C is a constant. The polytropic process equation describes expansion and compression processes which include heat transfer. The polytropic process equation describes expansion and compression processes which include heat transfer.
where V 100 is the volume occupied by a given sample of gas at 100 °C; V 0 is the volume occupied by the same sample of gas at 0 °C; and k is a constant which is the same for all gases at constant pressure. This equation does not contain the temperature and so is not what became known as Charles's Law.
Hence, volume is an important parameter in characterizing many thermodynamic processes where an exchange of energy in the form of work is involved. Volume is one of a pair of conjugate variables, the other being pressure. As with all conjugate pairs, the product is a form of energy.
The in the equation above, which represents specific volume, is not the same as the in the subsequent sections of this derivation, which will represent a velocity. This partial relation of the volume expansion coefficient, β {\displaystyle \mathrm {\beta } } , with respect to fluid density, ρ {\displaystyle \mathrm {\rho } } , given constant ...
The Joule expansion (a subset of free expansion) is an irreversible process in thermodynamics in which a volume of gas is kept in one side of a thermally isolated container (via a small partition), with the other side of the container being evacuated. The partition between the two parts of the container is then opened, and the gas fills the ...