When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Planetary mass - Wikipedia

    en.wikipedia.org/wiki/Planetary_mass

    The mass of a planet within the Solar System is an adjusted parameter in the preparation of ephemerides. There are three variations of how planetary mass can be calculated: If the planet has natural satellites, its mass can be calculated using Newton's law of universal gravitation to derive a generalization of Kepler's third law that includes ...

  3. Earth mass - Wikipedia

    en.wikipedia.org/wiki/Earth_mass

    An Earth mass (denoted as M 🜨, M ♁ or M E, where 🜨 and ♁ are the astronomical symbols for Earth), is a unit of mass equal to the mass of the planet Earth. The current best estimate for the mass of Earth is M 🜨 = 5.9722 × 10 24 kg, with a relative uncertainty of 10 −4. [2] It is equivalent to an average density of 5515 kg/m 3.

  4. Solar mass - Wikipedia

    en.wikipedia.org/wiki/Solar_mass

    The solar mass (M ☉) is a standard unit of mass in astronomy, equal to approximately 2 × 10 30 kg (2 nonillion kilograms in US short scale). It is approximately equal to the mass of the Sun . It is often used to indicate the masses of other stars , as well as stellar clusters , nebulae , galaxies and black holes .

  5. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    Newton defined the force acting on a planet to be the product of its mass and the acceleration (see Newton's laws of motion). So: Every planet is attracted towards the Sun. The force acting on a planet is directly proportional to the mass of the planet and is inversely proportional to the square of its distance from the Sun.

  6. Jupiter mass - Wikipedia

    en.wikipedia.org/wiki/Jupiter_mass

    The Jupiter mass, also called Jovian mass, is the unit of mass equal to the total mass of the planet Jupiter. This value may refer to the mass of the planet alone, or the mass of the entire Jovian system to include the moons of Jupiter. Jupiter is by far the most massive planet in the Solar System. It is approximately 2.5 times as massive as ...

  7. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G ( m 1 + m 2 ) , or as GM when one body is much larger than the other: μ = G ( M + m ) ≈ G M . {\displaystyle \mu =G(M+m)\approx GM.}

  8. List of gravitationally rounded objects of the Solar System

    en.wikipedia.org/wiki/List_of_gravitationally...

    The radii of these objects range over three orders of magnitude, from planetary-mass objects like dwarf planets and some moons to the planets and the Sun. This list does not include small Solar System bodies , but it does include a sample of possible planetary-mass objects whose shapes have yet to be determined.

  9. Moment of inertia factor - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia_factor

    where C is the first principal moment of inertia of the body, M is the mass of the body, and R is the mean radius of the body. [1] [2] For a sphere with uniform density, / = /. [note 1] [note 2] For a differentiated planet or satellite, where there is an increase of density with depth, / < /.