Search results
Results From The WOW.Com Content Network
Terms with infinitely many sine factors would necessarily be equal to zero. When only finitely many of the angles are nonzero then only finitely many of the terms on the right side are nonzero because all but finitely many sine factors vanish. Furthermore, in each term all but finitely many of the cosine factors are unity.
A uniformly recurrent word is a recurrent word in which for any given factor X in the sequence, there is some length n X (often much longer than the length of X) such that X appears in every block of length n X. [1] [6] [7] The terms minimal sequence [8] and almost periodic sequence (Muchnik, Semenov, Ushakov 2003) are also used.
The same criterion applies to products of arbitrary complex numbers (including negative reals) if the logarithm is understood as a fixed branch of logarithm which satisfies =, with the proviso that the infinite product diverges when infinitely many a n fall outside the domain of , whereas finitely many such a n can be ignored in the sum.
arcsin – inverse sine function. arctan – inverse tangent function. arctan2 – inverse tangent function with two arguments. (Also written as atan2.) arg – argument of. [2] arg max – argument of the maximum. arg min – argument of the minimum. arsech – inverse hyperbolic secant function. arsinh – inverse hyperbolic sine function.
where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.
Euler's formula states that, for any real number x, one has = + , where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the trigonometric functions cosine and sine respectively. This complex exponential function is sometimes denoted cis x ("cosine plus i sine").
Thomae mentioned it as an example for an integrable function with infinitely many discontinuities in an early textbook on Riemann's notion of integration. [ 4 ] Since every rational number has a unique representation with coprime (also termed relatively prime) p ∈ Z {\displaystyle p\in \mathbb {Z} } and q ∈ N {\displaystyle q\in \mathbb {N ...
The mathematical concept of infinity refines and extends the old philosophical concept, in particular by introducing infinitely many different sizes of infinite sets. Among the axioms of Zermelo–Fraenkel set theory, on which most of modern mathematics can be developed, is the axiom of infinity, which guarantees the existence of infinite sets. [1]