Ad
related to: metals that don't corrode f l
Search results
Results From The WOW.Com Content Network
In metallurgy, non-ferrous metals are metals or alloys that do not contain iron (allotropes of iron, ferrite, and so on) in appreciable amounts.. Generally more costly than ferrous metals, non-ferrous metals are used because of desirable properties such as low weight (e.g. aluminium), higher conductivity (e.g. copper), [1] non-magnetic properties or resistance to corrosion (e.g. zinc). [2]
Molybdenum is used in mercury wetted reed relays, because molybdenum does not form amalgams and is therefore resistant to corrosion by liquid mercury. [12] [13] Molybdenum is the most commonly used of the refractory metals. Its most important use is as a strengthening alloy of steel.
Type 304 is extensively used in such items as cookware, cutlery, and kitchen equipment. Type 316, also known as A4, is the next most common austenitic stainless steel. Some 300 series, such as Type 316, also contain some molybdenum to promote resistance to acids and increase resistance to localized attack (e.g. pitting and crevice corrosion).
904L is an austenitic stainless steel.It is softer than 316L, [1] [2] and its molybdenum addition gives it superior resistance to localized attack (pitting and crevice corrosion) by chlorides and greater resistance reducing acids; in particular, its copper addition gives it useful corrosion resistance to all concentrations of sulfuric acid.
Parts of the Clock of the Long Now, which is intended to run for 10,000 years, are made from Monel because of the corrosion resistance without the use of precious metals. [15] Monel was used for much of the exposed metal used in the interior of the Bryn Athyn Cathedral in Pennsylvania, religious seat of the General Church of the New Jerusalem.
High-strength low-alloy steel (HSLA) is a type of alloy steel that provides better mechanical properties or greater resistance to corrosion than carbon steel.HSLA steels vary from other steels in that they are not made to meet a specific chemical composition but rather specific mechanical properties.
Bluing only works on ferrous materials, such as steel or cast iron, for protecting against corrosion because it changes iron into Fe 3 O 4. As aluminium and polymers do not rust, they cannot be blued, and no corrosion protection is provided. However, the chemicals from the bluing process can cause uneven staining on aluminium and polymer parts.
The corrosion-retarding effect of the protective layer is produced by the particular distribution and concentration of alloying elements in it. It is not yet clear how exactly the patina formation differs from usual rusting, but it's established that drying of the wetted surface is necessary and that copper is the most important alloying element.