Search results
Results From The WOW.Com Content Network
In mathematics, an n-sphere or hypersphere is an ... these recurrences can be used to compute the surface area of any sphere or volume of any ball. ...
Direct projection of 3-sphere into 3D space and covered with surface grid, showing structure as stack of 3D spheres (2-spheres) In mathematics, a hypersphere or 3-sphere is a 4-dimensional analogue of a sphere, and is the 3-dimensional n-sphere. In 4-dimensional Euclidean space, it is the set of points equidistant from a fixed central point.
Surface areas of hyperspheres in dimensions 0 through 25. Let A n − 1 (R) denote the hypervolume of the (n − 1)-sphere of radius R. The (n − 1)-sphere is the (n − 1)-dimensional boundary (surface) of the n-dimensional ball of radius R, and the sphere's hypervolume and the ball's hypervolume are related by:
A ball in n dimensions is called a hyperball or n-ball and is bounded by a hypersphere or (n−1)-sphere. Thus, for example, a ball in the Euclidean plane is the same thing as a disk, the area bounded by a circle. In Euclidean 3-space, a ball is taken to be the volume bounded by a 2-dimensional sphere. In a one-dimensional space, a ball is a ...
Similarly, if a four-dimensional object passed through a three-dimensional (hyper) surface, one could observe a three-dimensional cross-section of the four-dimensional object. For example, a hypersphere would appear first as a point, then as a growing sphere (until it reaches the "hyperdiameter" of the hypersphere), with the sphere then ...
In a space of dimension three, it is a surface. For example, the equation + + + = defines an algebraic hypersurface of dimension n − 1 in the Euclidean space of dimension n. This hypersurface is also a smooth manifold, and is called a hypersphere or an (n – 1)-sphere.
A hypersphere in 5-space (also called a 4-sphere due to its surface being 4-dimensional) consists of the set of all points in 5-space at a fixed distance r from a central point P, that is rotationally symmetrical. The hypervolume enclosed by this hypersurface is: =
The 5-sphere, or hypersphere in six dimensions, is the five-dimensional surface equidistant from a point. It has symbol S 5, and the equation for the 5-sphere, radius r, centre the origin is = {: ‖ ‖ =}. The volume of six-dimensional space bounded by this 5-sphere is