Search results
Results From The WOW.Com Content Network
Three rows consist of outer hair cells (OHCs) and one row consists of inner hair cells (IHCs). The inner hair cells provide the main neural output of the cochlea. The outer hair cells, instead, mainly 'receive' neural input from the brain, which influences their motility as part of the cochlea's mechanical "pre-amplifier".
The cell cycle inhibitor p27kip1 has also been found to encourage regrowth of cochlear hair cells in mice following genetic deletion or knock down with siRNA targeting p27. [36] [37] Research on hair cell regeneration may bring us closer to clinical treatment for human hearing loss caused by hair cell damage or death.
The organ of Corti is located in the scala media of the cochlea of the inner ear between the vestibular duct and the tympanic duct and is composed of mechanosensory cells, known as hair cells. [2] Strategically positioned on the basilar membrane of the organ of Corti are three rows of outer hair cells (OHCs) and one row of inner hair cells ...
In the semicircular canals, the hair cells are found in the crista ampullaris, and the stereocilia protrude into the ampullary cupula. Here, the stereocilia are all oriented in the same direction. In the otoliths, the hair cells are topped by small, calcium carbonate crystals called otoconia. Unlike the semicircular ducts, the kinocilia of hair ...
The hair cells are attached to the basilar membrane, and with the moving of the basilar membrane, the tectorial membrane and the hair cells are also moving, with the stereocilia bending with the relative motion of the tectorial membrane. This can cause opening and closing of the mechanically gated potassium channels on the cilia of the hair ...
Hensen's cells are a layer of tall supporting cells around the outer hair cells (OHC) in the organ of Corti in the cochlea. [1] [2] [3] Their appearance are upper part wide with lower part narrow, column like cells.
The spiral (cochlear) ganglion is a group of neuron cell bodies in the modiolus, the conical central axis of the cochlea. These bipolar neurons innervate the hair cells of the organ of Corti . They project their axons to the ventral and dorsal cochlear nuclei as the cochlear nerve , a branch of the vestibulocochlear nerve (CN VIII).
In the mammalian cochlea, each outer hair cell stands on the soma of a cell of Deiters. What is not apparent in this diagram is that the phalangeal process is tilted out of the plane of this projection, such that its top is near the top of a different outer hair cell, further along in the directional of cochlear wave propagation.