Search results
Results From The WOW.Com Content Network
An electric field (sometimes called E-field [1]) is the physical field that surrounds electrically charged particles. Charged particles exert attractive forces on ...
In electromagnetism, electric flux is the total electric field that crosses a given surface. [1] The electric flux through a closed surface is equal to the total charge contained within that surface. The electric field E can exert a force on an electric charge at any point in space. The electric field is the gradient of the electric potential.
The Hall coefficient is defined as the ratio of the induced electric field to the product of the current density and the applied magnetic field. It is a characteristic of the material from which the conductor is made, since its value depends on the type, number, and properties of the charge carriers that constitute the current.
Poynting vector in a static field, where E is the electric field, H the magnetic field, and S the Poynting vector. The consideration of the Poynting vector in static fields shows the relativistic nature of the Maxwell equations and allows a better understanding of the magnetic component of the Lorentz force, q(v × B).
where D is the diffusion coefficient for the electron in the considered medium, n is the number of electrons per unit volume (i.e. number density), q is the magnitude of charge of an electron, μ is electron mobility in the medium, and E = −dΦ/dx (Φ potential difference) is the electric field as the potential gradient of the electric potential.
where: is the rate of change of the energy density in the volume. ∇•S is the energy flow out of the volume, given by the divergence of the Poynting vector S. J•E is the rate at which the fields do work on charges in the volume (J is the current density corresponding to the motion of charge, E is the electric field, and • is the dot product).
In physics, the electric displacement field (denoted by D), also called electric flux density or electric induction, is a vector field that appears in Maxwell's equations. It accounts for the electromagnetic effects of polarization and that of an electric field , combining the two in an auxiliary field .
Generally, the carrier mobility μ depends on temperature T, on the applied electric field E, and the concentration of localized states N. Depending on the model, increased temperature may either increase or decrease carrier mobility, applied electric field can increase mobility by contributing to thermal ionization of trapped charges, and ...