Ads
related to: 3 dimensional shape cube calculator free download pdf editor for windows 10sodapdf.com has been visited by 100K+ users in the past month
pdfguru.com has been visited by 1M+ users in the past month
pdf-format.com has been visited by 100K+ users in the past month
thebestpdf.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In geometry, a zonohedron is a convex polyhedron that is centrally symmetric, every face of which is a polygon that is centrally symmetric (a zonogon).Any zonohedron may equivalently be described as the Minkowski sum of a set of line segments in three-dimensional space, or as a three-dimensional projection of a hypercube.
Edge, a 1-dimensional element; Face, a 2-dimensional element; Cell, a 3-dimensional element; Hypercell or Teron, a 4-dimensional element; Facet, an (n-1)-dimensional element; Ridge, an (n-2)-dimensional element; Peak, an (n-3)-dimensional element; For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and ...
Live Geometry is a free CodePlex project that lets you create interactive ruler and compass constructions and experiment with them. It is written in Silverlight 4 and C# 4.0 (Visual Studio 2010). The core engine is a flexible and extensible framework that allows easy addition of new figure types and features.
In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3); the special case for n = 4 is known as a tesseract.It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length.
In mathematics, the cake number, denoted by C n, is the maximum of the number of regions into which a 3-dimensional cube can be partitioned by exactly n planes. The cake number is so-called because one may imagine each partition of the cube by a plane as a slice made by a knife through a cube-shaped cake .
A cube dissected into six characteristic orthoschemes. A 3-orthoscheme is a tetrahedron where all four faces are right triangles. A 3-orthoscheme is not a disphenoid, because its opposite edges are not of equal length. It is not possible to construct a disphenoid with right triangle or obtuse triangle faces.