Search results
Results From The WOW.Com Content Network
It is at most the length of the longer string. It is zero if and only if the strings are equal. If the strings have the same size, the Hamming distance is an upper bound on the Levenshtein distance. The Hamming distance is the number of positions at which the corresponding symbols in the two strings are different.
Simplistic hash functions may add the first and last n characters of a string along with the length, or form a word-size hash from the middle 4 characters of a string. This saves iterating over the (potentially long) string, but hash functions that do not hash on all characters of a string can readily become linear due to redundancies ...
A requirement for a string metric (e.g. in contrast to string matching) is fulfillment of the triangle inequality. For example, the strings "Sam" and "Samuel" can be considered to be close. [1] A string metric provides a number indicating an algorithm-specific indication of distance.
Presented here are two algorithms: the first, [8] simpler one, computes what is known as the optimal string alignment distance or restricted edit distance, [7] while the second one [9] computes the Damerau–Levenshtein distance with adjacent transpositions. Adding transpositions adds significant complexity.
In computer science and statistics, the Jaro–Winkler similarity is a string metric measuring an edit distance between two sequences. It is a variant of the Jaro distance metric [1] (1989, Matthew A. Jaro) proposed in 1990 by William E. Winkler.
The length of a string can also be stored explicitly, for example by prefixing the string with the length as a byte value. This convention is used in many Pascal dialects; as a consequence, some people call such a string a Pascal string or P-string. Storing the string length as byte limits the maximum string length to 255.
Enlarge or reduce the font size on your web browser Make web pages easy to read for you! With simple keyboard shortcuts, you can zoom in or out to make text larger or smaller.
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]