Search results
Results From The WOW.Com Content Network
A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity , reflexivity is one of three properties defining equivalence relations .
Inflection points in differential geometry are the points of the curve where the curvature changes its sign. [2] [3]For example, the graph of the differentiable function has an inflection point at (x, f(x)) if and only if its first derivative f' has an isolated extremum at x.
Rigidity is the property of a structure that it does not bend or flex under an applied force. The opposite of rigidity is flexibility.In structural rigidity theory, structures are formed by collections of objects that are themselves rigid bodies, often assumed to take simple geometric forms such as straight rods (line segments), with pairs of objects connected by flexible hinges.
In mathematics, a property is any characteristic that applies to a given set. [1] Rigorously, a property p defined for all elements of a set X is usually defined as a function p: X → {true, false}, that is true whenever the property holds; or, equivalently, as the subset of X for which p holds; i.e. the set {x | p(x) = true}; p is its indicator function.
The main property of closed sets, which results immediately from the definition, is that every intersection of closed sets is a closed set. It follows that for every subset Y of S , there is a smallest closed subset X of S such that Y ⊆ X {\displaystyle Y\subseteq X} (it is the intersection of all closed subsets that contain Y ).
In the latter case flux can readily be integrated over a surface. By contrast, according to the electromagnetism definition, flux is the integral over a surface; it makes no sense to integrate a second-definition flux for one would be integrating over a surface twice. Thus, Maxwell's quote only makes sense if "flux" is being used according to ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Therefore, it follows from the definition that is injective. There are multiple other methods of proving that a function is injective. For example, in calculus if f {\displaystyle f} is a differentiable function defined on some interval, then it is sufficient to show that the derivative is always positive or always negative on that interval.