When.com Web Search

  1. Ad

    related to: special angles and their values definition chemistry textbook

Search results

  1. Results From The WOW.Com Content Network
  2. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    For many cases, such as trigonal pyramidal and bent, the actual angle for the example differs from the ideal angle, and examples differ by different amounts. For example, the angle in H 2 S (92°) differs from the tetrahedral angle by much more than the angle for H 2 O (104.48°) does.

  3. Molecular model - Wikipedia

    en.wikipedia.org/wiki/Molecular_model

    The plastic grips well and makes bonds difficult to rotate, so that arbitrary torsion angles can be set and retain their value. The conformations of the backbone and side chains are determined by pre-computing the torsion angles and then adjusting the model with a protractor. The plastic is white and can be painted to distinguish between O and ...

  4. Exact trigonometric values - Wikipedia

    en.wikipedia.org/wiki/Exact_trigonometric_values

    The values of sine and cosine of 30 and 60 degrees are derived by analysis of the equilateral triangle. In an equilateral triangle, the 3 angles are equal and sum to 180°, therefore each corner angle is 60°. Bisecting one corner, the special right triangle with angles 30-60-90 is obtained.

  5. Rotamer - Wikipedia

    en.wikipedia.org/wiki/Rotamer

    a torsion angle between ±90° and 180° is called anti (a) a torsion angle between 30° and 150° or between −30° and −150° is called clinal (c) a torsion angle between 0° and ±30° or ±150° and 180° is called periplanar (p) a torsion angle between 0° and ±30° is called synperiplanar (sp), also called syn-or cis-conformation

  6. Tetrahedral molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_molecular_geometry

    In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron.The bond angles are arccos(− ⁠ 1 / 3 ⁠) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane (CH 4) [1] [2] as well as its heavier analogues.

  7. Geometry index - Wikipedia

    en.wikipedia.org/wiki/Geometry_index

    where: β > α are the two greatest valence angles of coordination center; θ = cos −1 (− 1 ⁄ 3) ≈ 109.5° is a tetrahedral angle. Extreme values of τ 4 and τ 4 ′ denote exactly the same geometries, however τ 4 ′ is always less or equal to τ 4 so the deviation from ideal tetrahedral geometry is more visible.

  8. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    Yet, clearly the bond angles between all these molecules deviate from their ideal geometries in different ways. Bent's rule can help elucidate these apparent discrepancies. [5] [20] [21] Electronegative substituents will have more p character. [5] [20] Bond angle has a proportional relationship with s character and an inverse relationship with ...

  9. Ligand cone angle - Wikipedia

    en.wikipedia.org/wiki/Ligand_cone_angle

    In coordination chemistry, the ligand cone angle (θ) is a measure of the steric bulk of a ligand in a transition metal coordination complex. It is defined as the solid angle formed with the metal at the vertex of a cone and the outermost edge of the van der Waals spheres of the ligand atoms at the perimeter of the base of the cone.