When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Predictive maintenance - Wikipedia

    en.wikipedia.org/wiki/Predictive_maintenance

    The use of Model Based Condition Monitoring for predictive maintenance programs is becoming increasingly popular over time. This method involves spectral analysis on the motor's current and voltage signals and then compares the measured parameters to a known and learned model of the motor to diagnose various electrical and mechanical anomalies.

  3. Condition monitoring - Wikipedia

    en.wikipedia.org/wiki/Condition_monitoring

    Model-based voltage and current systems (MBVI systems): This is a technique that makes use of the information available from the current and voltage signals across all three phases simultaneously. Model-based systems are able to identify many of the same phenomena also seen by more conventional techniques, covering electrical, mechanical, and ...

  4. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Unlike other BI technologies, predictive analytics is forward-looking, using past events to anticipate the future. [3] Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to ...

  5. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  6. Intelligent maintenance system - Wikipedia

    en.wikipedia.org/wiki/Intelligent_Maintenance_System

    An intelligent maintenance system is a system that uses data analysis and decision support tools to predict and prevent the potential failure of machines. The recent advancement in information technology, computers, and electronics have facilitated the design and implementation of such systems.

  7. Predictive Model Markup Language - Wikipedia

    en.wikipedia.org/wiki/Predictive_Model_Markup...

    Usage type (attribute usageType): defines the way a field is to be used in the model. Typical values are: active, predicted, and supplementary. Predicted fields are those whose values are predicted by the model. Outlier Treatment (attribute outliers): defines the outlier treatment to be use.

  8. Predictive learning - Wikipedia

    en.wikipedia.org/wiki/Predictive_learning

    Predictive learning is a machine learning (ML) technique where an artificial intelligence model is fed new data to develop an understanding of its environment, capabilities, and limitations. This technique finds application in many areas, including neuroscience , business , robotics , and computer vision .

  9. Automated machine learning - Wikipedia

    en.wikipedia.org/wiki/Automated_machine_learning

    Automated machine learning (AutoML) is the process of automating the tasks of applying machine learning to real-world problems. It is the combination of automation and ML. [1] AutoML potentially includes every stage from beginning with a raw dataset to building a machine learning model ready for deployment.