When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Absolutely and completely monotonic functions and sequences

    en.wikipedia.org/wiki/Absolutely_and_completely...

    A function that is absolutely monotonic on [,) can be extended to a function that is not only analytic on the real line but is even the restriction of an entire function to the real line. The big Bernshtein theorem : A function f ( x ) {\displaystyle f(x)} that is absolutely monotonic on ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} can be ...

  3. Monotonic function - Wikipedia

    en.wikipedia.org/wiki/Monotonic_function

    In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. [ 1 ] [ 2 ] [ 3 ] This concept first arose in calculus , and was later generalized to the more abstract setting of order theory .

  4. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. [1] The set X is called the domain of the function [2] and the set Y is called the codomain of the function. [3] Functions were originally the idealization of how a varying quantity depends on another quantity.

  5. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    Often the independent variable is time. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). Exponential growth is the inverse of logarithmic growth.

  6. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    Functions of the form ae x for constant a are the only functions that are equal to their derivative (by the Picard–Lindelöf theorem). Other ways of saying the same thing include: The slope of the graph at any point is the height of the function at that point. The rate of increase of the function at x is equal to the value of the function at x.

  7. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    The first-derivative test examines a function's monotonic properties (where the function is increasing or decreasing), focusing on a particular point in its domain.If the function "switches" from increasing to decreasing at the point, then the function will achieve a highest value at that point.

  8. Concave function - Wikipedia

    en.wikipedia.org/wiki/Concave_function

    A function f is concave over a convex set if and only if the function −f is a convex function over the set. The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield.

  9. Helly's selection theorem - Wikipedia

    en.wikipedia.org/wiki/Helly's_selection_theorem

    In other words, it is a sequential compactness theorem for the space of uniformly bounded monotone functions. It is named for the Austrian mathematician Eduard Helly. A more general version of the theorem asserts compactness of the space BV loc of functions locally of bounded total variation that are uniformly bounded at a point.