Search results
Results From The WOW.Com Content Network
Most two-sample t-tests are robust to all but large deviations from the assumptions. [22] For exactness, the t-test and Z-test require normality of the sample means, and the t-test additionally requires that the sample variance follows a scaled χ 2 distribution, and that the sample mean and sample variance be statistically independent ...
Student's t-test assumes that the sample means being compared for two populations are normally distributed, and that the populations have equal variances. Welch's t-test is designed for unequal population variances, but the assumption of normality is maintained. [1] Welch's t-test is an approximate solution to the Behrens–Fisher problem.
In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .
Assumptions, parametric and non-parametric: There are two groups of statistical tests, ... One sample t-test: interval: normal: univariate: 1: No [8] Location test ...
In statistics, particularly in hypothesis testing, the Hotelling's T-squared distribution (T 2), proposed by Harold Hotelling, [1] is a multivariate probability distribution that is tightly related to the F-distribution and is most notable for arising as the distribution of a set of sample statistics that are natural generalizations of the statistics underlying the Student's t-distribution.
For example, the test statistic might follow a Student's t distribution with known degrees of freedom, or a normal distribution with known mean and variance. Select a significance level (α), the maximum acceptable false positive rate. Common values are 5% and 1%. Compute from the observations the observed value t obs of the test statistic T.
Two-sample tests are appropriate for comparing two samples, typically experimental and control samples from a scientifically controlled experiment. Paired tests are appropriate for comparing two samples where it is impossible to control important variables. Rather than comparing two sets, members are paired between samples so the difference ...
Lehr's [3] [4] (rough) rule of thumb says that the sample size (for each group) for the common case of a two-sided two-sample t-test with power 80% (=) and significance level = should be: , where is an estimate of the population variance and = the to-be-detected difference in the mean values of both samples.