Search results
Results From The WOW.Com Content Network
S. R. De Groot, P. Mazur (2011) Non-Equilibrium Thermodynamics, Dover Books on Physics, ISBN 978-0486647418. Van Vliet, Carolyne M. (2008). Equilibrium and Non-equilibrium Statistical Mechanics. World Scientific Publishing Company. p. 982. ISBN 978-981-270-477-1. Peliti, Luca (2011). Statistical Mechanics in a Nutshell. Princeton University ...
In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, [1] chemistry, neuroscience, [2] computer science, [3] [4] information theory [5] and ...
The series includes the volumes Mechanics, Mechanics of Deformable Bodies, Electrodynamics, Optics, Thermodynamics and Statistical Mechanics, and Partial Differential Equations in Physics. Focusing on one subject each semester, the lectures formed a three-year cycle of courses that Sommerfeld repeatedly taught at the University of Munich for ...
The first part of the book starts by presenting the problem thermodynamics is trying to solve, and provides the postulates on which thermodynamics is founded. It then develops upon this foundation to discuss reversible processes, heat engines, thermodynamics potentials, Maxwell's relations, stability of thermodynamics systems, and first-order phase transitions.
At the same time, Gibbs fully generalized and expanded statistical mechanics into the form in which it is known today. Gibbs showed how statistical mechanics could be used even to extend thermodynamics beyond classical thermodynamics, to systems of any number of degrees of freedom (including microscopic systems) and non-extensive systems.
Thermal physics, generally speaking, is the study of the statistical nature of physical systems from an energetic perspective. Starting with the basics of heat and temperature, thermal physics analyzes the first law of thermodynamics and second law of thermodynamics from the statistical perspective, in terms of the number of microstates corresponding to a given macrostate.
As this quantity H was meant to represent the entropy of thermodynamics, the H-theorem was an early demonstration of the power of statistical mechanics as it claimed to derive the second law of thermodynamics—a statement about fundamentally irreversible processes—from reversible microscopic mechanics.
Stochastic thermodynamics is an emergent field of research in statistical mechanics that uses stochastic variables to better understand the non-equilibrium dynamics present in many microscopic systems [1] such as colloidal particles, biopolymers (e.g. DNA, RNA, and proteins), enzymes, and molecular motors.