Ads
related to: isosceles triangle pythagorean theorem questionstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.
The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.
Triangles based on Pythagorean triples are Heronian, meaning they have integer area as well as integer sides. The possible use of the 3 : 4 : 5 triangle in Ancient Egypt, with the supposed use of a knotted rope to lay out such a triangle, and the question whether Pythagoras' theorem was known at that time, have been much debated. [3]
By the Pythagorean theorem, the sum of the squares of the lengths of the catheti is equal to the square of the length of the hypotenuse. The term leg, in addition to referring to a cathetus of a right triangle, is also used to refer to either of the equal sides of an isosceles triangle or to either of the non-parallel sides of a trapezoid.
The fallacy of the isosceles triangle, from (Maxwell 1959, Chapter II, § 1), purports to show that every triangle is isosceles, meaning that two sides of the triangle are congruent. This fallacy was known to Lewis Carroll and may have been discovered by him. It was published in 1899. [13] [14] Given a triangle ABC, prove that AB = AC:
The sutras contain statements of the Pythagorean theorem, both in the case of an isosceles right triangle and in the general case, as well as lists of Pythagorean triples. [24] In Baudhayana, for example, the rules are given as follows:
Chapter 10 describes Pythagorean triangles with a side or area that is a square or cube, connecting this problem to Fermat's Last Theorem. After a chapter on Heronian triangles , Chapter 12 returns to this theme, discussing triangles whose hypotenuse and sum of sides are squares.