Search results
Results From The WOW.Com Content Network
Mitochondrial disease is a group of disorders caused by mitochondrial dysfunction. Mitochondria are the organelles that generate energy for the cell and are found in every cell of the human body except red blood cells. They convert the energy of food molecules into the ATP that powers most cell functions.
In humans, as in most eukaryotes, the 18S rRNA is a component of 40S ribosomal subunit, and the 60S large subunit contains three rRNA species (the 5S, 5.8S and 28S in mammals, 25S in plants). 60S rRNA acts as a ribozyme, catalyzing peptide bond formation, while 40S monitors the complementarity between tRNA anticodon and mRNA.
The most notable components of the cell that are targets of cell damage are the DNA and the cell membrane.. DNA damage: In human cells, both normal metabolic activities and environmental factors such as ultraviolet light and other radiations can cause DNA damage, resulting in as many as one million individual molecular lesions per cell per day.
Pearson syndrome is a mitochondrial disease caused by a deletion in mitochondrial DNA (mtDNA). [3] An mtDNA is genetic material contained in the cellular organelle called the mitochondria. Depending on the tissue type, each cell contains hundreds to thousands of mitochondria. There are 2–10 mtDNA molecules in each mitochondrion.
Tay–Sachs disease was the first of these disorders to be described, in 1881, followed by Gaucher disease in 1882. In the late 1950s and early 1960s, de Duve and colleagues, using cell fractionation techniques, cytological studies, and biochemical analyses, identified and characterized the lysosome as a cellular organelle responsible for ...
Hurler syndrome, also known as mucopolysaccharidosis Type IH (MPS-IH), Hurler's disease, and formerly gargoylism, is a genetic disorder that results in the buildup of large sugar molecules called glycosaminoglycans (GAGs) in lysosomes.
Peroxisomal disorders represent a class of medical conditions caused by defects in peroxisome functions. [1] This may be due to defects in single enzymes [2] important for peroxisome function or in peroxins, proteins encoded by PEX genes that are critical for normal peroxisome assembly and biogenesis.
At birth, all copies of mitochondrial DNA are thought to be identical in most humans. [2] Microheteroplasmy is mutations of up to about 2−5% of mitochondrial genomes, and is present in most adults. This refers to hundreds of independent mutations in one organism, with each mutation found in about 1–2% of all mitochondrial genomes. [ 3 ]