When.com Web Search

  1. Ads

    related to: orthogonality property fourier series calculator with steps calculus

Search results

  1. Results From The WOW.Com Content Network
  2. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    The Fourier series is a method of expressing a periodic function in terms of sinusoidal basis functions. Taking C[−π,π] to be the space of all real-valued functions continuous on the interval [−π,π] and taking the inner product to be , = ()

  3. Harmonic analysis - Wikipedia

    en.wikipedia.org/wiki/Harmonic_analysis

    Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.

  4. Fourier sine and cosine series - Wikipedia

    en.wikipedia.org/wiki/Fourier_sine_and_cosine_series

    An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.

  5. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    A Fourier series (/ ˈ f ʊr i eɪ,-i ər / [1]) is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are ...

  6. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity to the linear algebra of bilinear forms. Two elements u and v of a vector space with bilinear form B {\displaystyle B} are orthogonal when B ( u , v ) = 0 {\displaystyle B(\mathbf {u} ,\mathbf {v} )=0} .

  7. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    Another useful property is =, which follows from considering the orthogonality relation with () =. It is convenient when a Legendre series ∑ i a i P i {\textstyle \sum _{i}a_{i}P_{i}} is used to approximate a function or experimental data: the average of the series over the interval [−1, 1] is simply given by the leading expansion ...

  8. Orthogonal functions - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_functions

    In mathematics, orthogonal functions belong to a function space that is a vector space equipped with a bilinear form.When the function space has an interval as the domain, the bilinear form may be the integral of the product of functions over the interval:

  9. Chebyshev polynomials - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_polynomials

    This sum is called a Chebyshev series or a Chebyshev expansion. Since a Chebyshev series is related to a Fourier cosine series through a change of variables, all of the theorems, identities, etc. that apply to Fourier series have a Chebyshev counterpart. [16] These attributes include: The Chebyshev polynomials form a complete orthogonal system.