When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mechanical equilibrium - Wikipedia

    en.wikipedia.org/wiki/Mechanical_equilibrium

    Consequently, the object is in a state of static mechanical equilibrium. In classical mechanics, a particle is in mechanical equilibrium if the net force on that particle is zero. [1]: 39 By extension, a physical system made up of many parts is in mechanical equilibrium if the net force on each of its individual parts is zero. [1]: 45–46 [2]

  3. Equilibrant force - Wikipedia

    en.wikipedia.org/wiki/Equilibrant_Force

    Equilibrant force. In mechanics, an equilibrant force is a force which brings a body into mechanical equilibrium. [1] According to Newton's second law, a body has zero acceleration when the vector sum of all the forces acting upon it is zero:

  4. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    A static equilibrium between two forces is the most usual way of measuring forces, using simple devices such as weighing scales and spring balances. For example, an object suspended on a vertical spring scale experiences the force of gravity acting on the object balanced by a force applied by the "spring reaction force", which equals the object ...

  5. Statics - Wikipedia

    en.wikipedia.org/wiki/Statics

    A particle is in equilibrium only if the resultant of all forces acting on the particle is equal to zero. In a rectangular coordinate system the equilibrium equations can be represented by three scalar equations, where the sums of forces in all three directions are equal to zero.

  6. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The forces acting on a body add as vectors, and so the total force on a body depends upon both the magnitudes and the directions of the individual forces. [ 23 ] : 58 When the net force on a body is equal to zero, then by Newton's second law, the body does not accelerate, and it is said to be in mechanical equilibrium .

  7. D'Alembert's principle - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_principle

    D'Alembert's principle generalizes the principle of virtual work from static to dynamical systems by introducing forces of inertia which, when added to the applied forces in a system, result in dynamic equilibrium. [1] [2] D'Alembert's principle can be applied in cases of kinematic constraints that depend on velocities.

  8. Archimedes' principle - Wikipedia

    en.wikipedia.org/wiki/Archimedes'_principle

    The sum force acting on the object, then, is equal to the difference between the weight of the object ('down' force) and the weight of displaced liquid ('up' force). Equilibrium, or neutral buoyancy, is achieved when these two weights (and thus forces) are equal.

  9. Free body diagram - Wikipedia

    en.wikipedia.org/wiki/Free_body_diagram

    (A diagram showing the forces exerted both on and by a body is likely to be confusing since all the forces will cancel out. By Newton's 3rd law if body A exerts a force on body B then B exerts an equal and opposite force on A. This should not be confused with the equal and opposite forces that are necessary to hold a body in equilibrium ...