When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    Concurrent lines arise in the dual of Pappus's hexagon theorem. For each side of a cyclic hexagon, extend the adjacent sides to their intersection, forming a triangle exterior to the given side. Then the segments connecting the circumcenters of opposite triangles are concurrent. [8]

  3. Ceva's theorem - Wikipedia

    en.wikipedia.org/wiki/Ceva's_theorem

    Ceva's theorem, case 1: the three lines are concurrent at a point O inside ABC Ceva's theorem, case 2: the three lines are concurrent at a point O outside ABC. In Euclidean geometry, Ceva's theorem is a theorem about triangles.

  4. Projective geometry - Wikipedia

    en.wikipedia.org/wiki/Projective_geometry

    The line joining them is then called the Pascal line of the hexagon. Brianchon: If all six sides of a hexagon are tangent to a conic, then its diagonals (i.e. the lines joining opposite vertices) are three concurrent lines. Their point of intersection is then called the Brianchon point of the hexagon.

  5. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    Given a set of collinear points, by plane duality we obtain a set of lines all of which meet at a common point. The property that this set of lines has (meeting at a common point) is called concurrency, and the lines are said to be concurrent lines. Thus, concurrency is the plane dual notion to collinearity.

  6. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    Two intersecting lines. In Euclidean geometry, the intersection of a line and a line can be the empty set, a point, or another line.Distinguishing these cases and finding the intersection have uses, for example, in computer graphics, motion planning, and collision detection.

  7. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    However, parallel (non-crossing) pairs of lines are less restricted in hyperbolic line arrangements than in the Euclidean plane: in particular, the relation of being parallel is an equivalence relation for Euclidean lines but not for hyperbolic lines. [51] The intersection graph of the lines in a hyperbolic arrangement can be an arbitrary ...

  8. Do you stop in an intersection to make a left turn? Here’s ...

    www.aol.com/stop-intersection-left-turn-why...

    Question: I was recently told by a friend that the proper way to make a left-hand turn at a stop light was to proceed into the intersection when the light turns green, then wait until oncoming ...

  9. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Four line segments, each perpendicular to one side of a cyclic quadrilateral and passing through the opposite side's midpoint, are concurrent. [23]: p.131, [24] These line segments are called the maltitudes, [25] which is an abbreviation for midpoint altitude.