When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    The tribonacci numbers are like the Fibonacci numbers, but instead of starting with two predetermined terms, the sequence starts with three predetermined terms and each term afterwards is the sum of the preceding three terms. The first few tribonacci numbers are:

  3. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    The number of binary strings of length n without an odd number of consecutive 1 s is the Fibonacci number F n+1. For example, out of the 16 binary strings of length 4, there are F 5 = 5 without an odd number of consecutive 1 s—they are 0000, 0011, 0110, 1100, 1111.

  4. Fibonacci coding - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_coding

    To encode an integer N: . Find the largest Fibonacci number equal to or less than N; subtract this number from N, keeping track of the remainder.; If the number subtracted was the i th Fibonacci number F(i), put a 1 in place i − 2 in the code word (counting the left most digit as place 0).

  5. Overlapping subproblems - Wikipedia

    en.wikipedia.org/wiki/Overlapping_subproblems

    [1] [2] [3] For example, the problem of computing the Fibonacci sequence exhibits overlapping subproblems. The problem of computing the nth Fibonacci number F(n), can be broken down into the subproblems of computing F(n − 1) and F(n − 2), and then adding the two.

  6. Fibonacci search technique - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_search_technique

    Let k be defined as an element in F, the array of Fibonacci numbers. n = F m is the array size. If n is not a Fibonacci number, let F m be the smallest number in F that is greater than n. The array of Fibonacci numbers is defined where F k+2 = F k+1 + F k, when k ≥ 0, F 1 = 1, and F 0 = 1. To test whether an item is in the list of ordered ...

  7. Fibonacci prime - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_prime

    A prime divides if and only if p is congruent to ±1 modulo 5, and p divides + if and only if it is congruent to ±2 modulo 5. (For p = 5, F 5 = 5 so 5 divides F 5) . Fibonacci numbers that have a prime index p do not share any common divisors greater than 1 with the preceding Fibonacci numbers, due to the identity: [6]

  8. Zeckendorf's theorem - Wikipedia

    en.wikipedia.org/wiki/Zeckendorf's_theorem

    64 = 34 + 21 + 8 + 1 64 = 34 + 21 + 5 + 3 + 1 64 = 34 + 13 + 8 + 5 + 3 + 1. but these are not Zeckendorf representations because 34 and 21 are consecutive Fibonacci numbers, as are 5 and 3. For any given positive integer, its Zeckendorf representation can be found by using a greedy algorithm, choosing the largest possible Fibonacci number at ...

  9. Lucas pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Lucas_pseudoprime

    When P = 1 and Q = −1, the U n (P,Q) sequence represents the Fibonacci numbers. A Fibonacci pseudoprime is often [2]: 264, [3]: 142, [4]: 127 defined as a composite number n not divisible by 5 for which congruence holds with P = 1 and Q = −1. By this definition, the Fibonacci pseudoprimes form a sequence: