Search results
Results From The WOW.Com Content Network
Mitochondrial uncoupling protein 3 (UCP3) is a members of the larger family of mitochondrial anion carrier proteins (MACP). UCPs facilitate the transfer of anions from the inner to the outer mitochondrial membrane and transfer of protons from the outer to the inner mitochondrial membrane, reducing the mitochondrial membrane potential in mammalian cells.
Smale's problems is a list of eighteen unsolved problems in mathematics proposed by Steve Smale in 1998 [1] and republished in 1999. [2] Smale composed this list in reply to a request from Vladimir Arnold, then vice-president of the International Mathematical Union, who asked several mathematicians to propose a list of problems for the 21st century.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
A related problem is posed by Fermat's principle: light follows the path of shortest optical length connecting two points, which depends upon the material of the medium. One corresponding concept in mechanics is the principle of least/stationary action. Many important problems involve functions of several variables.
Discrete optimization is a branch of optimization in applied mathematics and computer science. As opposed to continuous optimization, some or all of the variables used in a discrete optimization problem are restricted to be discrete variables—that is, to assume only a discrete set of values, such as the integers. [1]
While the norm does not result in an NP-hard problem, the norm is convex but is not strictly differentiable due to the kink at x = 0. Subgradient methods which rely on the subderivative can be used to solve regularized learning problems. However, faster convergence can be achieved through proximal methods.
The Cousin problem is a problem related to the analytical properties of complex manifolds, but the only obstructions to solving problems of a complex analytic property are pure topological; [80] [39] [31] Serre called this the Oka principle. [84] They are now posed, and solved, for arbitrary complex manifold M, in terms of conditions on M.
For some problems, the nature of the true function is not known a priori, and therefore it is not clear which surrogate model will be the most accurate one. In addition, there is no consensus on how to obtain the most reliable estimates of the accuracy of a given surrogate. Many other problems have known physics properties.