Search results
Results From The WOW.Com Content Network
Cyanobacteria (/ s aɪ ˌ æ n oʊ b æ k ˈ t ɪər i. ə /), also called Cyanobacteriota or Cyanophyta, are a phylum of autotrophic gram-negative bacteria [6] that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" (from Ancient Greek κύανος (kúanos) 'blue') refers to their bluish green color, [7] [8 ...
Cyanobacteria is the only prokaryotic group that performs oxygenic photosynthesis. Anoxygenic photosynthetic bacteria use PSI- and PSII-like photosystems, which are pigment protein complexes for capturing light. [5] Both of these photosystems use bacteriochlorophyll. There are multiple hypotheses for how oxygenic photosynthesis evolved.
Unlike plants and algae, cyanobacteria are prokaryotes. They do not contain chloroplasts; rather, they bear a striking resemblance to chloroplasts themselves. This suggests that organisms resembling cyanobacteria were the evolutionary precursors of chloroplasts. One imagines primitive eukaryotic cells taking up cyanobacteria as intracellular ...
Oxygenic photosynthesis can be performed by plants and cyanobacteria; cyanobacteria are believed to be the progenitors of the photosystem-containing chloroplasts of eukaryotes. Photosynthetic bacteria that cannot produce oxygen have only one photosystem, which is similar to either PSI or PSII .
All species in the cyanobacteria phylum can perform photosynthesis. They use a similar photosynthesis to plants, using two photosystems which is called the Z-scheme.This is different from other photosynthetic bacteria that only use one photosystem and do not have thylakoids.
Cyanobacteria are model microorganisms for the study of photosynthesis, carbon and nitrogen assimilation, evolution of plant plastids, and adaptability to environmental stresses. Synechocystis sp. PCC6803 is one of the most highly studied types of cyanobacteria as it can grow both autotrophically or heterotrophically in the absence of light.
However, cyanobacteria first must locate and physically interact with their host in order to form a symbiotic relationship. Members of the cyanobacterial genus Nostoc can become motile through the use of hormogonia, while the host plant excretes chemicals to guide the cyanobacteria via chemotaxis. [33]
They are related to chlorophylls, which are the primary pigments in plants, algae, and cyanobacteria. Organisms that contain bacteriochlorophyll conduct photosynthesis to sustain their energy requirements, but the process is anoxygenic and does not produce oxygen as a byproduct. They use wavelengths of light not absorbed by plants or cyanobacteria.