When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of simple cubic graphs - Wikipedia

    en.wikipedia.org/wiki/Table_of_simple_cubic_graphs

    The two edges along the cycle adjacent to any of the vertices are not written down. Let v be the vertices of the graph and describe the Hamiltonian circle along the p vertices by the edge sequence v 0 v 1, v 1 v 2, ...,v p−2 v p−1, v p−1 v 0. Halting at a vertex v i, there is one unique vertex v j at a distance d i joined by a chord with v i,

  3. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    A drawing of a graph with 6 vertices and 7 edges. In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points) which are connected by edges (also called arcs, links or lines).

  4. Vertex (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(graph_theory)

    A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...

  5. Girth (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Girth_(graph_theory)

    A cubic graph (all vertices have degree three) of girth g that is as small as possible is known as a g-cage (or as a (3,g)-cage).The Petersen graph is the unique 5-cage (it is the smallest cubic graph of girth 5), the Heawood graph is the unique 6-cage, the McGee graph is the unique 7-cage and the Tutte eight cage is the unique 8-cage. [3]

  6. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).

  7. Cayley's formula - Wikipedia

    en.wikipedia.org/wiki/Cayley's_formula

    The formula was first discovered by Carl Wilhelm Borchardt in 1860, and proved via a determinant. [2] In a short 1889 note, Cayley extended the formula in several directions, by taking into account the degrees of the vertices. [3] Although he referred to Borchardt's original paper, the name "Cayley's formula" became standard in the field.

  8. Directed graph - Wikipedia

    en.wikipedia.org/wiki/Directed_graph

    A directed graph is weakly connected (or just connected [9]) if the undirected underlying graph obtained by replacing all directed edges of the graph with undirected edges is a connected graph. A directed graph is strongly connected or strong if it contains a directed path from x to y (and from y to x) for every pair of vertices (x, y).

  9. File:All Standard Model Vertices.pdf - Wikipedia

    en.wikipedia.org/wiki/File:All_Standard_Model...

    English: The above interactions form the basis of the standard model. All Feynman diagrams in the standard model are built from combinations of these vertices. The first row are the quantum chromodynamics vertices, the second row is the electromagnetic vertex, the third row are the weak vertices, the fourth row are the Higgs vertices and the final row is the electroweak vertices.