When.com Web Search

  1. Ad

    related to: example of orthogonal function

Search results

  1. Results From The WOW.Com Content Network
  2. Orthogonal functions - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_functions

    Several sets of orthogonal functions have become standard bases for approximating functions. For example, the sine functions sin nx and sin mx are orthogonal on the interval x ∈ ( − π , π ) {\displaystyle x\in (-\pi ,\pi )} when m ≠ n {\displaystyle m\neq n} and n and m are positive integers.

  3. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    We say that functions and are orthogonal if their inner product (equivalently, the value of this integral) is zero: f , g w = 0. {\displaystyle \langle f,g\rangle _{w}=0.} Orthogonality of two functions with respect to one inner product does not imply orthogonality with respect to another inner product.

  4. Orthogonal polynomials - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_polynomials

    However, there are many examples of orthogonal polynomials where the measure dα(x) has points with non-zero measure where the function α is discontinuous, so cannot be given by a weight function W as above.

  5. Orthogonality - Wikipedia

    en.wikipedia.org/wiki/Orthogonality

    The line segments AB and CD are orthogonal to each other. In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity.Whereas perpendicular is typically followed by to when relating two lines to one another (e.g., "line A is perpendicular to line B"), [1] orthogonal is commonly used without to (e.g., "orthogonal lines A and B").

  6. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    The Legendre rational functions are a sequence of orthogonal functions on [0, ∞). They are obtained by composing the Cayley transform with Legendre polynomials. A rational Legendre function of degree n is defined as: R n ( x ) = 2 x + 1 P n ( x − 1 x + 1 ) . {\displaystyle R_{n}(x)={\frac {\sqrt {2}}{x+1}}\,P_{n}\left({\frac {x-1}{x+1 ...

  7. Empirical orthogonal functions - Wikipedia

    en.wikipedia.org/wiki/Empirical_orthogonal_functions

    That is, the basis functions are chosen to be different from each other, and to account for as much variance as possible. The method of EOF analysis is similar in spirit to harmonic analysis, but harmonic analysis typically uses predetermined orthogonal functions, for example, sine and cosine functions at fixed frequencies. In some cases the ...

  8. Walsh function - Wikipedia

    en.wikipedia.org/wiki/Walsh_function

    But unlike the sine and cosine functions, which are continuous, Walsh functions are piecewise constant. They take the values −1 and +1 only, on sub-intervals defined by dyadic fractions. The system of Walsh functions is known as the Walsh system. It is an extension of the Rademacher system of orthogonal functions. [2]

  9. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    A unit vector means that the vector has a length of 1, which is also known as normalized. Orthogonal means that the vectors are all perpendicular to each other. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length.