When.com Web Search

  1. Ads

    related to: quaternion vs additive method calculator algebra 3 answers pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    There are at least two ways of representing quaternions as matrices in such a way that quaternion addition and multiplication correspond to matrix addition and matrix multiplication. One is to use 2 × 2 complex matrices, and the other is to use 4 × 4 real matrices. In each case, the representation given is one of a family of linearly related ...

  3. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.

  4. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  5. Quaternion algebra - Wikipedia

    en.wikipedia.org/wiki/Quaternion_algebra

    In mathematics, a quaternion algebra over a field F is a central simple algebra A over F [1] [2] that has dimension 4 over F.Every quaternion algebra becomes a matrix algebra by extending scalars (equivalently, tensoring with a field extension), i.e. for a suitable field extension K of F, is isomorphic to the 2 × 2 matrix algebra over K.

  6. Screw theory - Wikipedia

    en.wikipedia.org/wiki/Screw_theory

    Now for any quaternion vector p, p* = −p, let q = 1 + pε ∈ F, where the required rotation and translation are effected. Evidently the group of units of the ring of dual quaternions is a Lie group. A subgroup has Lie algebra generated by the parameters a r and b s, where a, b ∈ R, and r, s ∈ H. These six parameters generate a subgroup ...

  7. Quaternionic analysis - Wikipedia

    en.wikipedia.org/wiki/Quaternionic_analysis

    In mathematics, quaternionic analysis is the study of functions with quaternions as the domain and/or range. Such functions can be called functions of a quaternion variable just as functions of a real variable or a complex variable are called.

  8. Arithmetic hyperbolic 3-manifold - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_hyperbolic_3...

    A quaternion algebra over a field is a four-dimensional central simple-algebra.A quaternion algebra has a basis ,,, where , and =.. A quaternion algebra is said to be split over if it is isomorphic as an -algebra to the algebra of matrices (); a quaternion algebra over an algebraically closed field is always split.

  9. Quaternion group - Wikipedia

    en.wikipedia.org/wiki/Quaternion_group

    The quaternion group has the unusual property of being Hamiltonian: Q 8 is non-abelian, but every subgroup is normal. [4] Every Hamiltonian group contains a copy of Q 8. [5] The quaternion group Q 8 and the dihedral group D 4 are the two smallest examples of a nilpotent non-abelian group.