When.com Web Search

  1. Ads

    related to: arc trig functions calculator with steps and examples

Search results

  1. Results From The WOW.Com Content Network
  2. List of integrals of inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The inverse trigonometric functions are also known as the "arc functions". C is used for the arbitrary constant of integration that can only be determined if something about the value of the integral at some point is known. Thus each function has an infinite number of antiderivatives.

  3. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_trigonometric...

    Or, "the arc whose cosine is x" is the same as "the angle whose cosine is x", because the length of the arc of the circle in radii is the same as the measurement of the angle in radians. [5] In computer programming languages, the inverse trigonometric functions are often called by the abbreviated forms asin , acos , atan .

  4. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles.

  5. Jyā, koti-jyā and utkrama-jyā - Wikipedia

    en.wikipedia.org/wiki/Jyā,_koti-jyā_and_utkrama...

    Let 'arc AB' denote an arc whose two extremities are A and B of a circle with center 'O'. If a perpendicular BM is dropped from B to OA, then: jyā of arc AB = BM; koti-jyā of arc AB = OM; utkrama-jyā of arc AB = MA; If the radius of the circle is R and the length of arc AB is s, the angle subtended by arc AB at O measured in radians is θ ...

  6. CORDIC - Wikipedia

    en.wikipedia.org/wiki/CORDIC

    CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...

  7. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.

  8. Inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_hyperbolic_functions

    This is analogous to the way circular angle measure is the arc length of an arc of the unit circle in the Euclidean plane or twice the area of the corresponding circular sector. Alternately hyperbolic angle is the area of a sector of the hyperbola = Some authors call the inverse hyperbolic functions hyperbolic area functions.

  9. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The polynomials, exponential function e x, and the trigonometric functions sine and cosine, are examples of entire functions. Examples of functions that are not entire include the square root, the logarithm, the trigonometric function tangent, and its inverse, arctan. For these functions the Taylor series do not converge if x is far from b.