Search results
Results From The WOW.Com Content Network
The most energetically favorable conformation for a monosubstituted cyclohexane is the chair conformation with the non-hydrogen substituent in the equatorial position because it prevents high steric strain from 1,3 diaxial interactions. [11] In methylcyclohexane the two chair conformers are not isoenergetic. The methyl group prefers the ...
The molecular motions involved in a chair flip are detailed in the figure on the right: The half-chair conformation (D, 10.8 kcal/mol, C 2 symmetry) is the energy maximum when proceeding from the chair conformer (A, 0 kcal/mol reference, D 3d symmetry) to the higher energy twist-boat conformer (B, 5.5 kcal/mol, D 2 symmetry).
A-values help predict the conformation of cyclohexane rings. The most stable conformation will be the one which has the substituent or substituents equatorial. When multiple substituents are taken into consideration, the conformation where the substituent with the largest A-value is equatorial is favored.
Most methylcyclohexane is extracted from petroleum but it can be also produced by catalytic hydrogenation of toluene: CH 3 C 6 H 5 + 3 H 2 → CH 3 C 6 H 11. The hydrocarbon is a minor component of automobile fuel, with its share in US gasoline varying between 0.3 and 1.7% in early 1990s [10] and 0.1 to 1% in 2011. [11]
The chair and twist-boat are energy minima and are therefore conformers, while the half-chair and the boat are transition states and represent energy maxima. The idea that the chair conformation is the most stable structure for cyclohexane was first proposed as early as 1890 by Hermann Sachse, but only gained widespread acceptance much later.
As shown by the relative structure energies in the diagram above, the chair structures are the most stable carbohydrate form. This relatively defined and stable conformation means that the hydrogen atoms of the pyranose ring are held at relatively constant angles to one another.
The Fürst-Plattner rule attributes this regiochemical control to a large preference for the reaction pathway that follows the more stable chair-like transition state (attack at the C1-position) compared to the one proceeding through the unfavored twist boat-like transition state (attack at the C2-position).
Arrow pushing for the Robinson annulation between 2-methylcyclohexan-1-one and but-3-en-2-one in the presence of sodium ethoxide as the base. The original procedure of the Robinson annulation begins with the nucleophilic attack of a ketone in a Michael reaction on a vinyl ketone to produce the intermediate Michael adduct.