When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    The algorithm starts a new perceptron every time an example is wrongly classified, initializing the weights vector with the final weights of the last perceptron. Each perceptron will also be given another weight corresponding to how many examples do they correctly classify before wrongly classifying one, and at the end the output will be a ...

  3. Kernel perceptron - Wikipedia

    en.wikipedia.org/wiki/Kernel_perceptron

    The perceptron algorithm is an online learning algorithm that operates by a principle called "error-driven learning". It iteratively improves a model by running it on training samples, then updating the model whenever it finds it has made an incorrect classification with respect to a supervised signal.

  4. Perceptrons (book) - Wikipedia

    en.wikipedia.org/wiki/Perceptrons_(book)

    The Gamba perceptron machine was similar to the perceptron machine of Rosenblatt. Its input were images. The image is passed through binary masks (randomly generated) in parallel. Behind each mask is a photoreceiver that fires if the input, after masking, is bright enough. The second layer is made of standard perceptron units.

  5. Perceptron: AI bias can arise from annotation instructions - AOL

    www.aol.com/news/perceptron-ai-bias-arise...

    This week in AI, a new study reveals how bias, a common problem in AI systems, can start with the instructions given to the people recruited to annotate data from which AI systems learn to make ...

  6. Bias–variance tradeoff - Wikipedia

    en.wikipedia.org/wiki/Bias–variance_tradeoff

    The bias–variance decomposition forms the conceptual basis for regression regularization methods such as LASSO and ridge regression. Regularization methods introduce bias into the regression solution that can reduce variance considerably relative to the ordinary least squares (OLS) solution. Although the OLS solution provides non-biased ...

  7. Structured prediction - Wikipedia

    en.wikipedia.org/wiki/Structured_prediction

    One of the easiest ways to understand algorithms for general structured prediction is the structured perceptron by Collins. [3] This algorithm combines the perceptron algorithm for learning linear classifiers with an inference algorithm (classically the Viterbi algorithm when used on sequence data) and can be described abstractly as follows:

  8. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    A perceptron traditionally used a Heaviside step function as its nonlinear activation function. However, the backpropagation algorithm requires that modern MLPs use continuous activation functions such as sigmoid or ReLU. [8] Multilayer perceptrons form the basis of deep learning, [9] and are applicable across a vast set of diverse domains. [10]

  9. Bias (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bias_(statistics)

    Detection bias occurs when a phenomenon is more likely to be observed for a particular set of study subjects. For instance, the syndemic involving obesity and diabetes may mean doctors are more likely to look for diabetes in obese patients than in thinner patients, leading to an inflation in diabetes among obese patients because of skewed detection efforts.