Search results
Results From The WOW.Com Content Network
Other generating functions of random variables include the moment-generating function, the characteristic function and the cumulant generating function. The probability generating function is also equivalent to the factorial moment generating function , which as E [ z X ] {\displaystyle \operatorname {E} \left[z^{X}\right]} can also be ...
When the image (or range) of is finitely or infinitely countable, the random variable is called a discrete random variable [5]: 399 and its distribution is a discrete probability distribution, i.e. can be described by a probability mass function that assigns a probability to each value in the image of .
In statistics, the variance function is a smooth function that depicts the variance of a random quantity as a function of its mean.The variance function is a measure of heteroscedasticity and plays a large role in many settings of statistical modelling.
The ordinary generating function of a sequence a n is: (;) = =. If a n is the probability mass function of a discrete random variable, then its ordinary generating function is called a probability-generating function.
The delta method uses second-order Taylor expansions to approximate the variance of a function of one or more random variables: see Taylor expansions for the moments of functions of random variables. For example, the approximate variance of a function of one variable is given by
Formally, a multivariate random variable is a column vector = (, …,) (or its transpose, which is a row vector) whose components are random variables on the probability space (,,), where is the sample space, is the sigma-algebra (the collection of all events), and is the probability measure (a function returning each event's probability).
The expected value of a random variable with a finite number of outcomes is a weighted average of all possible outcomes. In the case of a continuum of possible outcomes, the expectation is defined by integration. In the axiomatic foundation for probability provided by measure theory, the expectation is given by Lebesgue integration.
Here, as usual, stands for the conditional expectation of Y given X, which we may recall, is a random variable itself (a function of X, determined up to probability one). As a result, Var ( Y ∣ X ) {\displaystyle \operatorname {Var} (Y\mid X)} itself is a random variable (and is a function of X ).