When.com Web Search

  1. Ad

    related to: what is pwcorr in stata 1 and 2 examples

Search results

  1. Results From The WOW.Com Content Network
  2. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  3. Polychoric correlation - Wikipedia

    en.wikipedia.org/wiki/Polychoric_correlation

    In statistics, polychoric correlation [1] is a technique for estimating the correlation between two hypothesised normally distributed continuous latent variables, from two observed ordinal variables. Tetrachoric correlation is a special case of the polychoric correlation applicable when both observed variables are dichotomous .

  4. Comparison of statistical packages - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_statistical...

    Product One-way Two-way MANOVA GLM Mixed model Post-hoc Latin squares; ADaMSoft: Yes Yes No No No No No Alteryx: Yes Yes Yes Yes Yes Analyse-it: Yes Yes No

  5. Kernel regression - Wikipedia

    en.wikipedia.org/wiki/Kernel_regression

    In statistics, kernel regression is a non-parametric technique to estimate the conditional expectation of a random variable.The objective is to find a non-linear relation between a pair of random variables X and Y.

  6. Homoscedasticity and heteroscedasticity - Wikipedia

    en.wikipedia.org/wiki/Homoscedasticity_and...

    [1] [2] [3] Assuming a variable is homoscedastic when in reality it is heteroscedastic (/ ˌ h ɛ t ər oʊ s k ə ˈ d æ s t ɪ k /) results in unbiased but inefficient point estimates and in biased estimates of standard errors, and may result in overestimating the goodness of fit as measured by the Pearson coefficient.

  7. Seemingly unrelated regressions - Wikipedia

    en.wikipedia.org/wiki/Seemingly_unrelated...

    Here i represents the equation number, r = 1, …, R is the individual observation, and we are taking the transpose of the column vector. The number of observations R is assumed to be large, so that in the analysis we take R → ∞ {\displaystyle \infty } , whereas the number of equations m remains fixed.

  8. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  9. Multiple correspondence analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple_correspondence...

    MCA is performed by applying the CA algorithm to either an indicator matrix (also called complete disjunctive table – CDT) or a Burt table formed from these variables. [citation needed] An indicator matrix is an individuals × variables matrix, where the rows represent individuals and the columns are dummy variables representing categories of the variables. [1]