When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix addition - Wikipedia

    en.wikipedia.org/wiki/Matrix_addition

    Two matrices must have an equal number of rows and columns to be added. [1] In which case, the sum of two matrices A and B will be a matrix which has the same number of rows and columns as A and B. The sum of A and B, denoted A + B, is computed by adding corresponding elements of A and B: [2] [3]

  3. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    The following exposition of the algorithm assumes that all of these matrices have sizes that are powers of two (i.e., ,, ⁡ ()), but this is only conceptually necessary — if the matrices , are not of type , the "missing" rows and columns can be filled with zeros to obtain matrices with sizes of powers of two — though real implementations ...

  4. Qalculate! - Wikipedia

    en.wikipedia.org/wiki/Qalculate!

    Qalculate! supports common mathematical functions and operations, multiple bases, autocompletion, complex numbers, infinite numbers, arrays and matrices, variables, mathematical and physical constants, user-defined functions, symbolic derivation and integration, solving of equations involving unknowns, uncertainty propagation using interval arithmetic, plotting using Gnuplot, unit and currency ...

  5. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The key observation is that multiplying two 2 × 2 matrices can be done with only 7 multiplications, instead of the usual 8 (at the expense of 11 additional addition and subtraction operations). This means that, treating the input n × n matrices as block 2 × 2 matrices, the task of multiplying n × n matrices can be reduced to 7 subproblems ...

  6. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Unsourced material may be challenged and removed. Find sources: "Computational complexity of mathematical operations" – news · newspapers · books · scholar · JSTOR ( April 2015 ) ( Learn how and when to remove this ...

  7. Frobenius inner product - Wikipedia

    en.wikipedia.org/wiki/Frobenius_inner_product

    In mathematics, the Frobenius inner product is a binary operation that takes two matrices and returns a scalar.It is often denoted , .The operation is a component-wise inner product of two matrices as though they are vectors, and satisfies the axioms for an inner product.

  8. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.

  9. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Even in the case of matrices over fields, the product is not commutative in general, although it is associative and is distributive over matrix addition. The identity matrices (which are the square matrices whose entries are zero outside of the main diagonal and 1 on the main diagonal) are identity elements of the matrix product.