When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Strain rate - Wikipedia

    en.wikipedia.org/wiki/Strain_rate

    The definition of strain rate was first introduced in 1867 by American metallurgist Jade LeCocq, who defined it as "the rate at which strain occurs. It is the time rate of change of strain." In physics the strain rate is generally defined as the derivative of the strain with respect to time. Its precise definition depends on how strain is measured.

  3. Strain-rate tensor - Wikipedia

    en.wikipedia.org/wiki/Strain-rate_tensor

    A two-dimensional flow that, at the highlighted point, has only a strain rate component, with no mean velocity or rotational component. In continuum mechanics, the strain-rate tensor or rate-of-strain tensor is a physical quantity that describes the rate of change of the strain (i.e., the relative deformation) of a material in the neighborhood of a certain point, at a certain moment of time.

  4. Compressive strength - Wikipedia

    en.wikipedia.org/wiki/Compressive_strength

    Compressive strength is a key value for design of structures. Compressive strength is often measured on a universal testing machine. Measurements of compressive strength are affected by the specific test method and conditions of measurement. Compressive strengths are usually reported in relationship to a specific technical standard.

  5. Strain (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Strain_(mechanics)

    The volumetric strain, also called bulk strain, is the relative variation of the volume, as arising from dilation or compression; it is the first strain invariant or trace of the tensor: = = = + + Actually, if we consider a cube with an edge length a, it is a quasi-cube after the deformation (the variations of the angles do not change the ...

  6. Creep (deformation) - Wikipedia

    en.wikipedia.org/wiki/Creep_(deformation)

    The minimum value of creep rate that is commonly applied to alloys is based on two norms: (1) the stress required to produce a creep rate of 0.1%/h × 10 −3 and (2) the stress required to produce a creep rate of 0.1%/h × 10 −4, which takes roughly about 11.5 years. The former standard has widely been used in the component design of turbine ...

  7. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...

  8. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    The relation between mechanical stress, strain, and the strain rate can be quite complicated, although a linear approximation may be adequate in practice if the quantities are sufficiently small. Stress that exceeds certain strength limits of the material will result in permanent deformation (such as plastic flow , fracture , cavitation ) or ...

  9. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    Where ″ is the global constant for relating strain, strain rate and stress. 3) Based on the true stress-strain curve and its derivative form, we can estimate the strain necessary to start necking. This can be calculated based on the intersection between true stress-strain curve as shown in right.