When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lattice Boltzmann methods - Wikipedia

    en.wikipedia.org/wiki/Lattice_Boltzmann_methods

    A different interpretation of the lattice Boltzmann equation is that of a discrete-velocity Boltzmann equation. The numerical methods of solution of the system of partial differential equations then give rise to a discrete map, which can be interpreted as the propagation and collision of fictitious particles.

  3. Boltzmann equation - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_equation

    The general equation can then be written as [6] = + + (),. where the "force" term corresponds to the forces exerted on the particles by an external influence (not by the particles themselves), the "diff" term represents the diffusion of particles, and "coll" is the collision term – accounting for the forces acting between particles in collisions.

  4. Weight function - Wikipedia

    en.wikipedia.org/wiki/Weight_function

    The expected value of a random variable is the weighted average of the possible values it might take on, with the weights being the respective probabilities. More generally, the expected value of a function of a random variable is the probability-weighted average of the values the function takes on for each possible value of the random variable.

  5. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    Here + is the RK4 approximation of (+), and the next value (+) is determined by the present value plus the weighted average of four increments, where each increment is the product of the size of the interval, h, and an estimated slope specified by function f on the right-hand side of the differential equation.

  6. Method of averaging - Wikipedia

    en.wikipedia.org/wiki/Method_of_averaging

    The purpose of the method of averaging is to tell us the qualitative behavior of the vector field when we average it over a period of time. It guarantees that the solution y ( t ) {\displaystyle y(t)} approximates x ( t ) {\displaystyle x(t)} for times t = O ( 1 / ε ) . {\displaystyle t={\mathcal {O}}(1/\varepsilon ).}

  7. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta–Fehlberg...

    The solution is the weighted average of six increments, where each increment is the product of the size of the interval, , and an estimated slope specified by function f on the right-hand side of the differential equation.

  8. Defining equation (physical chemistry) - Wikipedia

    en.wikipedia.org/wiki/Defining_equation...

    Theoretical chemistry requires quantities from core physics, such as time, volume, temperature, and pressure.But the highly quantitative nature of physical chemistry, in a more specialized way than core physics, uses molar amounts of substance rather than simply counting numbers; this leads to the specialized definitions in this article.

  9. Effective diffusion coefficient - Wikipedia

    en.wikipedia.org/wiki/Effective_diffusion...

    Diffusion along both the grain boundary and in the lattice may be modeled with an Arrhenius equation. The ratio of the grain boundary diffusion activation energy over the lattice diffusion activation energy is usually 0.4–0.6, so as temperature is lowered, the grain boundary diffusion component increases. [1]