When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Speed_of_sound

    For instance, sound will travel 1.59 times faster in nickel than in bronze, due to the greater stiffness of nickel at about the same density. Similarly, sound travels about 1.41 times faster in light hydrogen gas than in heavy hydrogen gas, since deuterium has similar properties but twice the density. At the same time, "compression-type" sound ...

  3. Acoustic wave - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave

    An acoustic wave is a mechanical wave that transmits energy through the movements of atoms and molecules. Acoustic waves transmit through fluids in a longitudinal manner (movement of particles are parallel to the direction of propagation of the wave); in contrast to electromagnetic waves that transmit in transverse manner (movement of particles at a right angle to the direction of propagation ...

  4. Sound - Wikipedia

    en.wikipedia.org/wiki/Sound

    In physics, sound is a vibration that propagates as an acoustic wave through a transmission medium such as a gas, liquid or solid. In human physiology and psychology , sound is the reception of such waves and their perception by the brain . [ 1 ]

  5. Acoustic transmission - Wikipedia

    en.wikipedia.org/wiki/Acoustic_transmission

    Example of airborne and structure-borne transmission of sound, where Lp is sound pressure level, A is attenuation, P is acoustical pressure, S is the area of the wall [m²], and τ is the transmission coefficient. Acoustic transmission is the transmission of sounds through and between materials, including air, wall, and musical instruments.

  6. Attenuation - Wikipedia

    en.wikipedia.org/wiki/Attenuation

    Attenuation in fiber optics, also known as transmission loss, is the reduction in intensity of the light beam (or signal) with respect to distance travelled through a transmission medium. Attenuation coefficients in fiber optics usually use units of dB/km through the medium due to the relatively high quality of transparency of modern optical ...

  7. Sound amplification by stimulated emission of radiation

    en.wikipedia.org/wiki/Sound_amplification_by...

    Sound (or lattice vibration) can be described by a phonon just as light can be considered as photons, and therefore one can state that SASER is the acoustic analogue of the laser. [citation needed] In a SASER device, a source (e.g., an electric field as a pump) produces sound waves (lattice vibrations, phonons) that travel through an active medium.

  8. Acoustic impedance - Wikipedia

    en.wikipedia.org/wiki/Acoustic_impedance

    p is the acoustic pressure in the medium; ρ is the volumetric mass density of the medium; c is the speed of the sound waves traveling in the medium; δ is the particle displacement; x is the space variable along the direction of propagation of the sound waves. This equation is valid both for fluids and solids. In fluids, ρc 2 = K (K stands ...

  9. Absorption (acoustics) - Wikipedia

    en.wikipedia.org/wiki/Absorption_(acoustics)

    The energy dissipated within a medium as sound travels through it is analogous to the energy dissipated in electrical resistors or that dissipated in mechanical dampers for mechanical motion transmission systems. All three are equivalent to the resistive part of a system of resistive and reactive elements.