When.com Web Search

  1. Ads

    related to: volume booster without static friction

Search results

  1. Results From The WOW.Com Content Network
  2. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    Darcy–Weisbach equation. In fluid dynamics, the Darcy–Weisbach equation is an empirical equation that relates the head loss, or pressure loss, due to friction along a given length of pipe to the average velocity of the fluid flow for an incompressible fluid. The equation is named after Henry Darcy and Julius Weisbach.

  3. Total dynamic head - Wikipedia

    en.wikipedia.org/wiki/Total_dynamic_head

    In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid. TDH is expressed as the total equivalent height that a fluid is to be pumped, taking into account friction losses in the pipe. where: Static lift is the difference in elevation between the suction point and the discharge point.

  4. Net positive suction head - Wikipedia

    en.wikipedia.org/wiki/Net_positive_suction_head

    Net positive suction head. In a hydraulic circuit, net positive suction head (NPSH) may refer to one of two quantities in the analysis of cavitation: The Available NPSH (NPSH A): a measure of how close the fluid at a given point is to flashing, and so to cavitation. Technically it is the absolute pressure head minus the vapour pressure of the ...

  5. Sensitivity (explosives) - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_(explosives)

    In explosives engineering, sensitivity refers to the degree to which an explosive can be initiated by impact, heat, or friction. [1] Current in-use standard methods of mechanical (impact and friction) sensitivity determination differ by the sample preparation (constant mass or volume is usually used; pile or pressed pellet), sample arrangement (confined/unconfined sample etc), instrument type ...

  6. Friction loss - Wikipedia

    en.wikipedia.org/wiki/Friction_loss

    Friction loss is a significant engineering concern wherever fluids are made to flow, whether entirely enclosed in a pipe or duct, or with a surface open to the air. Historically, it is a concern in aqueducts of all kinds, throughout human history. It is also relevant to sewer lines. Systematic study traces back to Henry Darcy, an aqueduct engineer.

  7. Volumetric efficiency - Wikipedia

    en.wikipedia.org/wiki/Volumetric_efficiency

    Volumetric efficiency in a hydraulic pump refers to the percentage of actual fluid flow out of the pump compared to the flow out of the pump without leakage. In other words, if the flow out of a 100cc pump is 92cc (per revolution), then the volumetric efficiency is 92%. The volumetric efficiency will change with the pressure and speed a pump is ...