When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    In regression analysis, the distinction between errors and residuals is subtle and important, and leads to the concept of studentized residuals. Given an unobservable function that relates the independent variable to the dependent variable – say, a line – the deviations of the dependent variable observations from this function are the ...

  3. PRESS statistic - Wikipedia

    en.wikipedia.org/wiki/PRESS_statistic

    Models that are over-parameterised (over-fitted) would tend to give small residuals for observations included in the model-fitting but large residuals for observations that are excluded. The PRESS statistic has been extensively used in lazy learning and locally linear learning to speed-up the assessment and the selection of the neighbourhood size.

  4. Breusch–Godfrey test - Wikipedia

    en.wikipedia.org/wiki/Breusch–Godfrey_test

    The Breusch–Godfrey test is a test for autocorrelation in the errors in a regression model. It makes use of the residuals from the model being considered in a regression analysis, and a test statistic is derived from these. The null hypothesis is that there is no serial correlation of any order up to p. [3]

  5. Studentized residual - Wikipedia

    en.wikipedia.org/wiki/Studentized_residual

    The key reason for studentizing is that, in regression analysis of a multivariate distribution, the variances of the residuals at different input variable values may differ, even if the variances of the errors at these different input variable values are equal.

  6. Heteroskedasticity-consistent standard errors - Wikipedia

    en.wikipedia.org/wiki/Heteroskedasticity...

    When this is not the case, the errors are said to be heteroskedastic, or to have heteroskedasticity, and this behaviour will be reflected in the residuals ^ estimated from a fitted model. Heteroskedasticity-consistent standard errors are used to allow the fitting of a model that does contain heteroskedastic residuals.

  7. Errors-in-variables model - Wikipedia

    en.wikipedia.org/wiki/Errors-in-variables_model

    Linear errors-in-variables models were studied first, probably because linear models were so widely used and they are easier than non-linear ones. Unlike standard least squares regression (OLS), extending errors in variables regression (EiV) from the simple to the multivariable case is not straightforward, unless one treats all variables in the same way i.e. assume equal reliability.

  8. Glejser test - Wikipedia

    en.wikipedia.org/wiki/Glejser_test

    Step 3: Select the equation with the highest R 2 and lowest standard errors to represent heteroscedasticity. Step 4: Perform a t-test on the equation selected from step 3 on γ 1 . If γ 1 is statistically significant, reject the null hypothesis of homoscedasticity.

  9. White test - Wikipedia

    en.wikipedia.org/wiki/White_test

    White test is a statistical test that establishes whether the variance of the errors in a regression model is constant: that is for homoskedasticity. This test, and an estimator for heteroscedasticity-consistent standard errors , were proposed by Halbert White in 1980. [ 1 ]