When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  3. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    Independent: Each outcome will not affect the other outcome (for from 1 to 10), which means the variables , …, are independent of each other. Identically distributed : Regardless of whether the coin is fair (with a probability of 1/2 for heads) or biased, as long as the same coin is used for each flip, the probability of getting heads remains ...

  4. Dependent and independent variables - Wikipedia

    en.wikipedia.org/wiki/Dependent_and_independent...

    It is possible to have multiple independent variables or multiple dependent variables. For instance, in multivariable calculus, one often encounters functions of the form z = f(x,y), where z is a dependent variable and x and y are independent variables. [8] Functions with multiple outputs are often referred to as vector-valued functions.

  5. Conditional independence - Wikipedia

    en.wikipedia.org/wiki/Conditional_independence

    In probability theory, conditional independence describes situations wherein an observation is irrelevant or redundant when evaluating the certainty of a hypothesis. . Conditional independence is usually formulated in terms of conditional probability, as a special case where the probability of the hypothesis given the uninformative observation is equal to the probability

  6. Pairwise independence - Wikipedia

    en.wikipedia.org/wiki/Pairwise_independence

    Pairwise independence does not imply mutual independence, as shown by the following example attributed to S. Bernstein. [3]Suppose X and Y are two independent tosses of a fair coin, where we designate 1 for heads and 0 for tails.

  7. Misconceptions about the normal distribution - Wikipedia

    en.wikipedia.org/wiki/Misconceptions_about_the...

    Students of statistics and probability theory sometimes develop misconceptions about the normal distribution, ideas that may seem plausible but are mathematically untrue. For example, it is sometimes mistakenly thought that two linearly uncorrelated, normally distributed random variables must be statistically independent.

  8. Linear independence - Wikipedia

    en.wikipedia.org/wiki/Linear_independence

    In the theory of vector spaces, a set of vectors is said to be linearly independent if there exists no nontrivial linear combination of the vectors that equals the zero vector. If such a linear combination exists, then the vectors are said to be linearly dependent. These concepts are central to the definition of dimension. [1]

  9. Binary independence model - Wikipedia

    en.wikipedia.org/wiki/Binary_Independence_Model

    This independence is the "naive" assumption of a Naive Bayes classifier, where properties that imply each other are nonetheless treated as independent for the sake of simplicity. This assumption allows the representation to be treated as an instance of a Vector space model by considering each term as a value of 0 or 1 along a dimension ...