Search results
Results From The WOW.Com Content Network
A formal power series can be loosely thought of as an object that is like a polynomial, but with infinitely many terms.Alternatively, for those familiar with power series (or Taylor series), one may think of a formal power series as a power series in which we ignore questions of convergence by not assuming that the variable X denotes any numerical value (not even an unknown value).
Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.
The partial sums of a power series are polynomials, the partial sums of the Taylor series of an analytic function are a sequence of converging polynomial approximations to the function at the center, and a converging power series can be seen as a kind of generalized polynomial with infinitely many terms. Conversely, every polynomial is a power ...
Addition, multiplication and multiplicative inverse of p-adic numbers are defined as for formal power series, followed by the normalization of the result. With these operations, the p -adic numbers form a field , which is an extension field of the rational numbers.
In algebraic geometry, a completion of a ring of functions R on a space X concentrates on a formal neighborhood of a point of X: heuristically, this is a neighborhood so small that all Taylor series centered at the point are convergent.
For example, if k is a field and X is an indeterminate, then the ring of formal power series k[[X]] is a regular local ring having (Krull) dimension 1. If p is an ordinary prime number, the ring of p-adic integers is an example of a discrete valuation ring, and consequently a regular local ring. In contrast to the example above, this ring does ...
Formal power series are used in combinatorics to describe and study sequences that are otherwise difficult to handle, for example, using the method of generating functions. The Hilbert–Poincaré series is a formal power series used to study graded algebras .
In a formal power series, the powers of the variable are used only as position-holders for the coefficients, so that the coefficient of is the fifth term in the sequence. In combinatorics, the method of generating functions uses formal power series to represent numerical sequences and multisets, for instance allowing concise expressions for ...