When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Disjoint union - Wikipedia

    en.wikipedia.org/wiki/Disjoint_union

    In mathematics, the disjoint union (or discriminated union) of the sets A and B is the set formed from the elements of A and B labelled (indexed) with the name of the set from which they come. So, an element belonging to both A and B appears twice in the disjoint union, with two different labels.

  3. Disjoint union (topology) - Wikipedia

    en.wikipedia.org/wiki/Disjoint_union_(topology)

    The disjoint union space X, together with the canonical injections, can be characterized by the following universal property: If Y is a topological space, and f i : X i → Y is a continuous map for each i ∈ I, then there exists precisely one continuous map f : X → Y such that the following set of diagrams commute:

  4. Direct limit - Wikipedia

    en.wikipedia.org/wiki/Direct_limit

    Intuitively, two elements in the disjoint union are equivalent if and only if they "eventually become equal" in the direct system. An equivalent formulation that highlights the duality to the inverse limit is that an element is equivalent to all its images under the maps of the direct system, i.e. x i ∼ f i j ( x i ) {\displaystyle x_{i}\sim ...

  5. Coproduct - Wikipedia

    en.wikipedia.org/wiki/Coproduct

    The concept of disjoint union secretly underlies the above examples: the direct sum of abelian groups is the group generated by the "almost" disjoint union (disjoint union of all nonzero elements, together with a common zero), similarly for vector spaces: the space spanned by the "almost" disjoint union; the free product for groups is generated ...

  6. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    The union is the join/supremum of and with respect to because: L ⊆ L ∪ R {\displaystyle L\subseteq L\cup R} and R ⊆ L ∪ R , {\displaystyle R\subseteq L\cup R,} and if Z {\displaystyle Z} is a set such that L ⊆ Z {\displaystyle L\subseteq Z} and R ⊆ Z {\displaystyle R\subseteq Z} then L ∪ R ⊆ Z . {\displaystyle L\cup R\subseteq Z.}

  7. Join (topology) - Wikipedia

    en.wikipedia.org/wiki/Join_(topology)

    Geometric join of two line segments.The original spaces are shown in green and blue. The join is a three-dimensional solid, a disphenoid, in gray.. In topology, a field of mathematics, the join of two topological spaces and , often denoted by or , is a topological space formed by taking the disjoint union of the two spaces, and attaching line segments joining every point in to every point in .

  8. Symmetric difference - Wikipedia

    en.wikipedia.org/wiki/Symmetric_difference

    In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets { 1 , 2 , 3 } {\displaystyle \{1,2,3\}} and { 3 , 4 } {\displaystyle \{3,4\}} is { 1 , 2 , 4 ...

  9. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    Another way to combine two (disjoint) posets is the ordinal sum [12] (or linear sum), [13] Z = X ⊕ Y, defined on the union of the underlying sets X and Y by the order a ≤ Z b if and only if: a, b ∈ X with a ≤ X b, or; a, b ∈ Y with a ≤ Y b, or; a ∈ X and b ∈ Y. If two posets are well-ordered, then so is their ordinal sum. [14]