When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The greatest common divisor g of a and b is the unique (positive) common divisor of a and b that is divisible by any other common divisor c. [6] The greatest common divisor can be visualized as follows. [7] Consider a rectangular area a by b, and any common divisor c that divides both a and b exactly.

  3. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.

  4. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.

  5. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    The second way to normalize the greatest common divisor in the case of polynomials with integer coefficients is to divide every output by the content of , to get a primitive greatest common divisor. If the input polynomials are coprime, this normalisation also provides a greatest common divisor equal to 1.

  6. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    Thus after, at most, deg(b) steps, one get a null remainder, say r k. As (a, b) and (b, rem(a,b)) have the same divisors, the set of the common divisors is not changed by Euclid's algorithm and thus all pairs (r i, r i+1) have the same set of common divisors. The common divisors of a and b are thus the common divisors of r k−1 and 0.

  7. Pollard's p − 1 algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard%27s_p_%E2%88%92_1...

    If a number x is congruent to 1 modulo a factor of n, then the gcd(x − 1, n) will be divisible by that factor. The idea is to make the exponent a large multiple of p − 1 by making it a number with very many prime factors; generally, we take the product of all prime powers less than some limit B .

  8. What is a factor rate and how to calculate it - AOL

    www.aol.com/finance/factor-rate-calculate...

    Step 1: Subtract 1 from the factor rate. Step 2: Multiply the decimal by 365. ... use a business loan calculator to see how much the same loan would cost with an APR. For the $100,000 loan, the ...

  9. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    The method can be summarized in two steps. Let be the given polynomial. The first step determines the multiplicity structure by applying square-free factorization with a numerical greatest common divisor algorithm. [5] This allows writing as