Search results
Results From The WOW.Com Content Network
In mathematics, equality is a relationship between two quantities or expressions, stating that they have the same value, or represent the same mathematical object. [1] [2] Equality between A and B is written A = B, and pronounced "A equals B". In this equality, A and B are distinguished by calling them left-hand side (LHS), and right-hand side ...
Things that are equal to the same thing are also equal to one another (the transitive property of a Euclidean relation). If equals are added to equals, then the wholes are equal (Addition property of equality). If equals are subtracted from equals, then the differences are equal (subtraction property of equality).
The Egyptians used the commutative property of multiplication to simplify computing products. [7] [8] Euclid is known to have assumed the commutative property of multiplication in his book Elements. [9] Formal uses of the commutative property arose in the late 18th and early 19th centuries, when mathematicians began to work on a theory of ...
To investigate the left distributivity of set subtraction over unions or intersections, consider how the sets involved in (both of) De Morgan's laws are all related: () = = () always holds (the equalities on the left and right are De Morgan's laws) but equality is not guaranteed in general (that is, the containment might be strict).
Note that the subtraction identity is not defined if =, since the logarithm of zero is not defined. Also note that, when programming, a {\displaystyle a} and c {\displaystyle c} may have to be switched on the right hand side of the equations if c ≫ a {\displaystyle c\gg a} to avoid losing the "1 +" due to rounding errors.
In approximate arithmetic, such as floating-point arithmetic, the distributive property of multiplication (and division) over addition may fail because of the limitations of arithmetic precision. For example, the identity 1 / 3 + 1 / 3 + 1 / 3 = ( 1 + 1 + 1 ) / 3 {\displaystyle 1/3+1/3+1/3=(1+1+1)/3} fails in decimal arithmetic , regardless of ...
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
An element a in a magma (M, ∗) has the left cancellation property (or is left-cancellative) if for all b and c in M, a ∗ b = a ∗ c always implies that b = c. An element a in a magma ( M , ∗) has the right cancellation property (or is right-cancellative ) if for all b and c in M , b ∗ a = c ∗ a always implies that b = c .