Search results
Results From The WOW.Com Content Network
Temperature-dependency of the heats of vaporization for water, methanol, benzene, and acetone. In thermodynamics, the enthalpy of vaporization (symbol ∆H vap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy that must be added to a liquid substance to transform a quantity of that substance into a gas.
The third column is the heat content of each gram of the liquid phase relative to water at 0 °C. The fourth column is the heat of vaporization of each gram of liquid that changes to vapor. The fifth column is the work PΔV done by each gram of liquid that changes to vapor. The sixth column is the density of the vapor.
Water has a very high specific heat capacity of 4184 J/(kg·K) at 20 °C (4182 J/(kg·K) at 25 °C) —the second-highest among all the heteroatomic species (after ammonia), as well as a high heat of vaporization (40.65 kJ/mol or 2268 kJ/kg at the normal boiling point), both of which are a result of the extensive hydrogen bonding between its ...
Latent heat can be understood as hidden energy which is supplied or extracted to change the state of a substance without changing its temperature or pressure. This includes the latent heat of fusion (solid to liquid), the latent heat of vaporization (liquid to gas) and the latent heat of sublimation (solid to gas). [1] [2]
The various triple points of water Phases in stable equilibrium Pressure Temperature liquid water, ice I h, and water vapor 611.657 Pa [8] 273.16 K (0.01 °C) liquid water, ice I h, and ice III: 209.9 MPa 251 K (−22 °C) liquid water, ice III, and ice V: 350.1 MPa −17.0 °C liquid water, ice V, and ice VI: 632.4 MPa 0.16 °C
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
For a liquid–gas transition, is the molar latent heat (or molar enthalpy) of vaporization; for a solid–gas transition, is the molar latent heat of sublimation. If the latent heat is known, then knowledge of one point on the coexistence curve , for instance (1 bar, 373 K) for water, determines the rest of the curve.
Vaporization (or vapo(u)risation) of an element or compound is a phase transition from the liquid phase to vapor. [1] There are two types of vaporization: evaporation and boiling . Evaporation is a surface phenomenon , whereas boiling is a bulk phenomenon (a phenomenon in which the whole object or substance is involved in the process).