Search results
Results From The WOW.Com Content Network
In statistics, the generalized Pareto distribution (GPD) is a family of continuous probability distributions.It is often used to model the tails of another distribution. It is specified by three parameters: location , scale , and shape
The Pareto distribution is a special case of the generalized Pareto distribution, which is a family of distributions of similar form, but containing an extra parameter in such a way that the support of the distribution is either bounded below (at a variable point), or bounded both above and below (where both are variable), with the Lomax ...
The generalized Pareto distribution has a support which is either bounded below only, or bounded both above and below; The metalog distribution, which provides flexibility for unbounded, bounded, and semi-bounded support, is highly shape-flexible, has simple closed forms, and can be fit to data using linear least squares.
In probability theory and statistics, the generalized extreme value (GEV) distribution [2] is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also known as type I, II and III extreme value distributions.
The q-exponential is a special case of the generalized Pareto distribution where =, =, = (). The q-exponential is the generalization of the Lomax distribution (Pareto Type II), as it extends this distribution to the cases of finite support.
The properties of this distribution are straightforward to derive from those of the log-logistic distribution. However, an alternative parameterisation, similar to that used for the generalized Pareto distribution and the generalized extreme value distribution, gives more interpretable parameters and also aids their estimation.
A common assumption for the first is the Poisson distribution, with the generalized Pareto distribution being used for the exceedances. A tail-fitting can be based on the Pickands–Balkema–de Haan theorem. [5] [6]
In probability theory and statistics, the Zipf–Mandelbrot law is a discrete probability distribution.Also known as the Pareto–Zipf law, it is a power-law distribution on ranked data, named after the linguist George Kingsley Zipf, who suggested a simpler distribution called Zipf's law, and the mathematician Benoit Mandelbrot, who subsequently generalized it.