When.com Web Search

  1. Ads

    related to: constructible polygon examples math games for kindergarten

Search results

  1. Results From The WOW.Com Content Network
  2. Constructible polygon - Wikipedia

    en.wikipedia.org/wiki/Constructible_polygon

    In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infinitely many constructible polygons, but only 31 with an odd number of sides are known.

  3. Geometric Origami - Wikipedia

    en.wikipedia.org/wiki/Geometric_Origami

    With a construction system that can trisect angles, such as mathematical origami, more numbers of sides are possible, using Pierpont primes in place of Fermat primes, including -gons for equal to 7, 13, 14, 17, 19, etc. [6] Geometric Origami provides explicit folding instructions for 15 different regular polygons, including those with 3, 5, 6 ...

  4. Category:Constructible polygons - Wikipedia

    en.wikipedia.org/.../Category:Constructible_polygons

    Articles related to constructible regular polygons, i.e. those amenable to compass and straightedge construction. Carl Friedrich Gauss proved that a regular polygon is constructible if its number of sides has no odd prime factors that are not Fermat primes, and no odd prime factors that are raised to a power of 2 or higher.

  5. Heptadecagon - Wikipedia

    en.wikipedia.org/wiki/Heptadecagon

    Publication by C. F. Gauss in Intelligenzblatt der allgemeinen Literatur-Zeitung. As 17 is a Fermat prime, the regular heptadecagon is a constructible polygon (that is, one that can be constructed using a compass and unmarked straightedge): this was shown by Carl Friedrich Gauss in 1796 at the age of 19. [1]

  6. 65537-gon - Wikipedia

    en.wikipedia.org/wiki/65537-gon

    The regular 65537-gon (one with all sides equal and all angles equal) is of interest for being a constructible polygon: that is, it can be constructed using a compass and an unmarked straightedge. This is because 65,537 is a Fermat prime , being of the form 2 2 n + 1 (in this case n = 4).

  7. Digon - Wikipedia

    en.wikipedia.org/wiki/Digon

    In geometry, a bigon, [1] digon, or a 2-gon, is a polygon with two sides and two vertices.Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visualised in elliptic space.