Ads
related to: operations on whole numbers examples list of negative
Search results
Results From The WOW.Com Content Network
The laws of arithmetic for negative numbers ensure that the common-sense idea of an opposite is reflected in arithmetic. For example, − (−3) = 3 because the opposite of an opposite is the original value. Negative numbers are usually written with a minus sign in front. For example, −3 represents a negative quantity with a magnitude of ...
Negative numbers: Real numbers that are less than zero. Because zero itself has no sign, neither the positive numbers nor the negative numbers include zero. When zero is a possibility, the following terms are often used: Non-negative numbers: Real numbers that are greater than or equal to zero. Thus a non-negative number is either zero or positive.
Historically the term was used for a number that was a multiple of 1, [10] [11] or to the whole part of a mixed number. [12] [13] Only positive integers were considered, making the term synonymous with the natural numbers. The definition of integer expanded over time to include negative numbers as their usefulness was recognized. [14]
The main kinds of numbers employed in arithmetic are natural numbers, whole numbers, integers, rational numbers, and real numbers. [12] The natural numbers are whole numbers that start from 1 and go to infinity. They exclude 0 and negative numbers.
For example, in the real numbers, the squaring operation only produces non-negative numbers; the codomain is the set of real numbers, but the range is the non-negative numbers. Operations can involve dissimilar objects: a vector can be multiplied by a scalar to form another vector (an operation known as scalar multiplication), [13] and the ...
A number is strictly negative if it is less than zero. A number is positive if it is greater than or equal to zero. A number is negative if it is less than or equal to zero. For example, the absolute value of a real number is always "non-negative", but is not necessarily "positive" in the first interpretation, whereas in the second ...
In elementary mathematics, the additive inverse is often referred to as the opposite number, [3] [4] or its negative. [5] The unary operation of arithmetic negation [6] is closely related to subtraction [7] and is important in solving algebraic equations. [8] Not all sets where addition is defined have an additive inverse, such as the natural ...
1. Denotes addition and is read as plus; for example, 3 + 2. 2. Denotes that a number is positive and is read as plus. Redundant, but sometimes used for emphasizing that a number is positive, specially when other numbers in the context are or may be negative; for example, +2. 3.