Search results
Results From The WOW.Com Content Network
Function : is graph continuous if for all there exists a function : such that ((),) is continuous at .. Dasgupta and Maskin named this property "graph continuity" because, if one plots a graph of a player's payoff as a function of his own strategy (keeping the other players' strategies fixed), then a graph-continuous payoff function will result in this graph changing continuously as one varies ...
The graphs can be used together to determine the economic equilibrium (essentially, to solve an equation). Simple graph used for reading values: the bell-shaped normal or Gaussian probability distribution, from which, for example, the probability of a man's height being in a specified range can be derived, given data for the adult male population.
In the physical sciences, the spectrum of a physical quantity (such as energy) may be called continuous if it is non-zero over the whole spectrum domain (such as frequency or wavelength) or discrete if it attains non-zero values only in a discrete set over the independent variable, with band gaps between pairs of spectral bands or spectral lines.
Within chemistry, a Job plot, otherwise known as the method of continuous variation or Job's method, is a method used in analytical chemistry to determine the stoichiometry of a binding event. The method is named after Paul Job and is also used in instrumental analysis and advanced chemical equilibrium texts and research articles.
A real function that is a function from real numbers to real numbers can be represented by a graph in the Cartesian plane; such a function is continuous if, roughly speaking, the graph is a single unbroken curve whose domain is the entire real line. A more mathematically rigorous definition is given below. [8]
In physics, for example, the space-time continuum model describes space and time as part of the same continuum rather than as separate entities. A spectrum in physics, such as the electromagnetic spectrum, is often termed as either continuous (with energy at all wavelengths) or discrete (energy at only certain wavelengths).
Graph theory, the study of graphs and networks, is often considered part of combinatorics, but has grown large enough and distinct enough, with its own kind of problems, to be regarded as a subject in its own right. [14] Graphs are one of the prime objects of study in discrete mathematics.
The concept of graph dynamical systems (GDS) can be used to capture a wide range of processes taking place on graphs or networks. A major theme in the mathematical and computational analysis of graph dynamical systems is to relate their structural properties (e.g. the network connectivity) and the global dynamics that result.