Search results
Results From The WOW.Com Content Network
The core of Apache Hadoop consists of a storage part, known as Hadoop Distributed File System (HDFS), and a processing part which is a MapReduce programming model. Hadoop splits files into large blocks and distributes them across nodes in a cluster. It then transfers packaged code into nodes to process the data in parallel.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from its original state, some details may not fully reflect the modified file.
Apache Parquet is a free and open-source column-oriented data storage format in the Apache Hadoop ecosystem. It is similar to RCFile and ORC, the other columnar-storage file formats in Hadoop, and is compatible with most of the data processing frameworks around Hadoop.
Apache Pig [1] is a high-level platform for creating programs that run on Apache Hadoop. The language for this platform is called Pig Latin. [1] Pig can execute its Hadoop jobs in MapReduce, Apache Tez, or Apache Spark. [2]
Apache Hive is a data warehouse software project. It is built on top of Apache Hadoop for providing data query and analysis. [3] [4] Hive gives an SQL-like interface to query data stored in various databases and file systems that integrate with Hadoop.
MapReduce is a programming model and an associated implementation for processing and generating big data sets with a parallel and distributed algorithm on a cluster. [1] [2] [3]A MapReduce program is composed of a map procedure, which performs filtering and sorting (such as sorting students by first name into queues, one queue for each name), and a reduce method, which performs a summary ...
Sahara is a component to easily and rapidly provision Hadoop clusters. Users will specify several parameters like the Hadoop version number, the cluster topology type, node flavor details (defining disk space, CPU and RAM settings), and others. After a user provides all of the parameters, Sahara deploys the cluster in a few minutes.