Search results
Results From The WOW.Com Content Network
The relation between local and global truncation errors is slightly different from in the simpler setting of one-step methods. For linear multistep methods, an additional concept called zero-stability is needed to explain the relation between local and global truncation errors.
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).
When using approximation equations or algorithms, especially when using finitely many digits to represent real numbers (which in theory have infinitely many digits), one of the goals of numerical analysis is to estimate computation errors. [5] Computation errors, also called numerical errors, include both truncation errors and roundoff errors.
Example A: Find the truncation in calculating the first derivative of () = at = using a step size of = Solution: The first derivative of () = is ′ =, and at = ...
If the eigenvalue is equal to one, the bifurcation is either a saddle-node (often called fold bifurcation in maps), transcritical or pitchfork bifurcation. If the eigenvalue is equal to −1, it is a period-doubling (or flip) bifurcation, and otherwise, it is a Hopf bifurcation. Examples of local bifurcations include: Saddle-node (fold) bifurcation
In numerical analysis, the ITP method (Interpolate Truncate and Project method) is the first root-finding algorithm that achieves the superlinear convergence of the secant method [1] while retaining the optimal [2] worst-case performance of the bisection method. [3]
Verlet integration (French pronunciation:) is a numerical method used to integrate Newton's equations of motion. [1] It is frequently used to calculate trajectories of particles in molecular dynamics simulations and computer graphics.
Let L⁄K be a Galois extension of global fields and C L stand for the idèle class group of L. The maps θ v for different places v of K can be assembled into a single global symbol map by multiplying the local components of an idèle class. One of the statements of the Artin reciprocity law is that this results in a canonical isomorphism. [6] [7]