Ad
related to: erwin schrodinger wave equation formula example
Search results
Results From The WOW.Com Content Network
The Schrödinger equation determines how wave functions evolve over time, and a wave function behaves qualitatively like other waves, such as water waves or waves on a string, because the Schrödinger equation is mathematically a type of wave equation. This explains the name "wave function", and gives rise to wave–particle duality.
The equations for relativistic quantum fields, of which the Klein–Gordon and Dirac equations are two examples, can be obtained in other ways, such as starting from a Lagrangian density and using the Euler–Lagrange equations for fields, or using the representation theory of the Lorentz group in which certain representations can be used to ...
The failure of classical mechanics applied to molecular, atomic, and nuclear systems and smaller induced the need for a new mechanics: quantum mechanics.The mathematical formulation was led by De Broglie, Bohr, Schrödinger, Pauli, and Heisenberg, and others, around the mid-1920s, and at that time was analogous to that of classical mechanics.
Schrödinger's equation, in bra–ket notation, is | = ^ | where ^ is the Hamiltonian operator.. The Hamiltonian operator can be written ^ = ^ + (^) where (^) is the potential energy, m is the mass and we have assumed for simplicity that there is only one spatial dimension q.
For example, a beam of electrons can be diffracted just like a beam of light or a water wave. The concept that matter behaves like a wave was proposed by French physicist Louis de Broglie ( / d ə ˈ b r ɔɪ / ) in 1924, and so matter waves are also known as de Broglie waves .
The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.
The Schrödinger equation describes the space- and time-dependence of the slow changing (non-relativistic) wave function of a quantum system. The solution of the Schrödinger equation for a bound system is discrete (a set of permitted states, each characterized by an energy level ) which results in the concept of quanta .
The Heisenberg picture is the closest to classical Hamiltonian mechanics (for example, the commutators appearing in the above equations directly translate into the classical Poisson brackets); but this is already rather "high-browed", and the Schrödinger picture is considered easiest to visualize and understand by most people, to judge from ...